YARMGUK UNIVERSITY

Investigation for Software Fault Proneness Prediction
at Method Level

By
Samah Aldiabat
Supervisors

Prof. Dr. Bilal Abul-Huda
Dr. Mohamed Akour

Computer Information Systems

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENT FOR THE
DEGREE OF THE MASTER OF COMPUTER INFORMATION SYSTEMS AT YARMOUK
UNIVERSITY, IRBID, JORDAN.

December, 2018

www.manaraa.com

Investigation for Software Fault Proneness
Prediction at Method Level

By
Samah Aldiabat

B.S ¢. Computer Information Systems/Jordan University of

Science and Technology, 2011 ,

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIRMENT
FOR THE DEGREE OF THE MASTER OF COMPUTER INFORMAION
SYSTEMS AT YARMOUK UNIVERSITY, IRBID, JORDAN.

Approved By:

Professor of Management Information Systems, Yarmouk University.

. \..Advisor

Mohammed Akour Co-advisor

Associate Professor of Software Engineering, Yarmouk University.

Ahmad Saifan............ess7. % s et sl stnnnele s e eatrsss e vh ey Member

Associate Professor of Software Engineering, Yarmouk University.

: L
Yahya Tashtoush...w.l, A

Associate Professor of Computer Engineering, Jordan University of science and

......... .Member

Technology.

December, 2018

www.manharaa.com

Acknowledgment

At the beginning and before any one I would like to thank God for my success and completing
this thesis that otherwise | would not have.
Big thank to my supervisors Dr. Bilal and Dr. Mohammed for the support and follow-up that
gives me the appropriate guidance to complete this thesis.
Great thanks and gratitude to my family who supported me at all times and encouraged me to

reach the top.

Also, many thanks to my friends and especially Hiba for supporting and helping me in the most

difficult times.

www.manharaa.com

Table of Contents

[T 0 I L OSSPSR Vi
LLEST OF FIQUIES. ...ttt bbb b sttt b e b e n e n e s Vil
URALAL e bbb Rt R R £ bR et R R Rt et R Rt E Rttt et r e VI
AN 0] 1 Lo SRS R IX
(O g T=T o] (=] @ o[- USSP PSP PR PRT PP 1
I 1011 0o [8 oy o] o LSOO 1
1=l LT g I @Y= - USRS 1
1.2 BACKOIOUNG ...ttt ettt b e bbbt e et eseebesbenbeneen 4
IR I o] o] 1< ¢ g IS ¥ 1 (=] =1 o | SO PS 7
131 RESEAICN PUIPOSE.....c.eetiietiteeet ettt b e s bbbttt be e nes 7
1.3.2 RESEAICN IMOTLIVALIONcvieeieiiceeece ettt sttt s e s te s e neeneenes 10
1.3.3 RESEAICH QUESTIONScevieveeteeetee ettt ettt et et et e te e eteeeaeeeteenteeeteeeteeereesnreeteenseenes 10
1.34 RESEArCh SIGNITICANCE ...o.vieeeeieceeee ettt ettt sae s 11
135 Operational DEfINITIONSccoiiiririieieeee et 11
(O T 101 (=]l XYY o TSRS PP 12
2. LITEIAtUIE REVIEW ...ttt bttt ettt bbbt st e st be sttt enes 12
2.1 Software fault, Bug and AefECT.........cci it 12
2.2Software Fault Proneness PrediCtioncecoieeeiiiiecie sttt et st 13
2.3Software Fault Prediction using Machine Learning TeChNIQUEScccovvveeverenceenieeceerieseeenen, 16
2.4 Software Fault Prediction USING METIICS.......coviiieriiiieiese ettt s 21
(O aF=T o] (=] g I o] =TSO TP S TR UP TP UR TP 24
3. ReSEArch MELNOAOIOQYcciiviiiiiicicitice et be et e besbeereestesreesresee e 24
3.1 OVverall RESEAICN DESIGNccueeieieeticieciectete ettt ettt st e te et e st e be s beeaa e besasentesreennas 24
3.2 RESEAICH PRESEScueiuieiieiieiteiestese ettt ettt ettt bbbt 25
3.2.1 Phase one: ColleCting JAva COUES........ccuiiiiieieie ettt sttt st sreeta e b nre s 25

3.2.2 Phase Two: Producing OO metrics on the method level with JAVA dataset using Intellij

IDEA t00l (Creating DAtaSET 1)ccooiiirieiiieisiisie sttt 29

3.2.3 Phase Three: Producing faulty & non-faulty methods using manual error seeding

(@1 T Lo = L= L) SR 30

3.2.4 Phase Four: Applying OO metrics and machine learning techniques on Java Dataset....... 31

3.2.5 Phase Five: Comparing between OO metrics and historical metrics.............ccoccoeevvreennnnns 32
v

www.manaraa.com

3.2.6 Phase Six: Comparing between machine learning techniques that used on the method level

... 33
3.2.6.1 Naive Bays AlQOritNm: ...t nreere s 33
3.2.6.2 JA8 AlGOTTTRIME ..ot 34
3.2.6.3 Decision Table AlGOrthim: ..o 35
3.2.6.4 Random FOrest AlQOrithim:ccooiiiiii e 37
I RIS AV AV N [To T] 4 1 SRS SUSSS 38
3.3 DALASELS ...ttt et r e b E et b e e e e e Rt et R e re e renneenes 40
3.4 Research Tools and APPlICALIONS.........ccecieiiieieciiieeece et s eanes 44
(O aF=T o] =] gl o TE | TSSOSO TSP R TSP UR PPN 45
4. EXPEITMENT SELUP. ...ttt b et b bt bbb b et et et b e bbbt enes 45
4.1 EVAIUALION IMBASUIEScveiiiiieieiteit ettt sttt ettt sttt sttt et eb e ebe b st b et et et eneebesbeebenaens 45
4.2 Experiment 1: EXTracting IMETIICS......coiiiiiiii sttt sttt sre e 46
4.3 Experiment 2: Error Seeding and MUTATIONccooiiiiiiiiiiincneeeeee e 46
4.4 Experiment 3: impPlementationcoooiiiiiiiiieeee s 49

(O T 101 (=l 1 SRRSO 58
5. RESUITS DISCUSSION ...ttt ettt b bt bbbttt b e bbb 58
(O T 101 (=] T SO 60
6. CoNClUSION AN FULUIE WOTK ..ot 60
7 RETEIEINCES ...ttt bbbt s bbb bbbt bt b ettt R bbbt 62

www.manaraa.com

List of Tables

TABLE 1: OBJECT ORIENTED METRICS USED (JETBRAINS.COM/IDEA, 2018)c.ccvvvierereirierreniereeneenene 8
TABLE 2: HISTORICAL METRICS DESCRIPTION (HATA, ET AL, 2012).....ccoviiiiriieeriieeeneeseeieseeeeesieeenes 33
TABLE 3: DETAILS OF DATASETS ..ottt st s 40
TABLE 4: NOT USED OBJECT ORIENTED METRICS (JETBRAINS.COM/IDEA, 2018).....c.cccvovvveerireeerienenes 42
TABLE 5: EVALUATION MEASURES ...ttt 45
TABLE 8: NAIVE BAYS ALGORITHM ON LARGE SCALE PROCESSED DATASETcccooivinirieeeeieneene, 49
TABLE 9: NAIVE BAYS ALGORITHM ON LARGE SCALE UNPROCESSED DATASET.......ccocvvvviiiiiin, 49
TABLE 10: J48 ALGORITHM ON LARGE SCALE PROCESSED DATASETccotvtiieieeienieeneeeeeeee e 50
TABLE 11: J48 ALGORITHM ON LARGE SCALE UNPROCESSED DATASETcccviiiiiiniiiccine, 50
TABLE 12: DECISION TABLE ALGORITHM ON LARGE SCALE PROCESSED DATASETcccevevenienenne. 50
TABLE 13: DECISION TABLE ALGORITHM ON LARGE SCALE UNPROCESSED DATASET ..o 51
TABLE 14: RANDOM FOREST ALGORITHM ON LARGE SCALE PROCESSED DATASETcccceeevenennenne. 51
TABLE 15: RANDOM FOREST ALGORITHM ON LARGE SCALE UNPROCESSED DATASETcccccevueue. 51
TABLE 16: SVM ALGORITHM ON LARGE SCALE PROCESSED DATASEToocteiiieeenieereeeeeeie e 51
TABLE 17: SVM ALGORITHM ON LARGE SCALE UNPROCESSED DATASETccooviiniiniicieieice, 52
TABLE 18: NAIVE BAYS ALGORITHM ON SMALL SCALE PROCESSED DATASETccovevevirerieecieneennen 52
TABLE 19: NAIVE BAYS ALGORITHM ON SMALL SCALE UNPROCESSED DATASETcccooovviiiiiine, 53
TABLE 20: J48 ALGORITHM ON SMALL SCALE PROCESSED DATASETociiiiiieeeenieeneeeeeee e 53
TABLE 21: J48 ALGORITHM ON SMALL SCALE UNPROCESSED DATASETccceciiiiiniiiriecieieiesie, 54
TABLE 22: DECISION TABLE ALGORITHM ON SMALL SCALE PROCESSED DATASETccccevevenenienne. 54
TABLE 23: DECISION TABLE ALGORITHM ON SMALL SCALE UNPROCESSED DATASETccecevunee. 55
TABLE 24: RANDOM FOREST ALGORITHM ON SMALL SCALE PROCESSED DATASET.ccccccevevenenne. 55
TABLE 25: RANDOM FOREST ALGORITHM ON SMALL SCALE UNPROCESSED DATASETccccceeuune. 56
TABLE 26: SVM ALGORITHM ON SMALL SCALE PROCESSED DATASETccviviinieinieeeneeeeenes 56
TABLE 27: SVM ALGORITHM ON SMALL SCALE UNPROCESSED DATASETcccecvieirieeereeeereenes 57
TABLE 28: COMPARISON OF ERROR RATE ..ottt s 59
\

www.manaraa.com

List of Figures

FIGURE 1: RESEARCH METHODOLOGY ...utiiiiiiiiiiiiic ittt sttt s s s 24
FIGURE 2: JAVA SOURCE CODEcootiiiiiiiiticcticte ettt et st e bbbt et e enes 25
FIGURE 3: INTELLI IDEA TOOL RESULTS (METRICS)uviuiiiiiiiiniiiiiiicicie sttt s sne e 29
FIGURE 4: METHOD BEFORE ERROR SEEDING.......ccciiiiiiiiiiiiiiiiiin i 30
FIGURE 5: METHOD AFTER ERROR SEEDINGcuoiiiiiiiiiiiiiiiiccn it 30
FIGURE 6: CLASS LABEL.....uiiitiiitiiticie ettt s he e e et e s ae e e b s be b et eenes 31
FIGURE 7: METRICS AFTER ERROR SEEDING......cuiiiiiiiiiiiiiiciicc et 32

Vi

www.manharaa.com

file:///I:/final%20thesis/Investigation%20for%20Software%20Fault%20Proneness%20Prediction%20at%20Method%20Level.docx%23_Toc534583918
file:///I:/final%20thesis/Investigation%20for%20Software%20Fault%20Proneness%20Prediction%20at%20Method%20Level.docx%23_Toc534583919
file:///I:/final%20thesis/Investigation%20for%20Software%20Fault%20Proneness%20Prediction%20at%20Method%20Level.docx%23_Toc534583920

Laaldl

plai (A ficale Al Baa gl (s g Ao Undll (o illy s sl 9l (e (Fal) | Jyadlae zla el
W eeagd) sl Bl a1y gh diall) 2018 g lidaala (A gulad) Cila glral) alii and (Alla) (A gulad) Cila glaal)
(J}Sﬁ daaa

cadl asas Jlaia) lela¥ duaasl)l claaglly clalall jlidly Gasd e ciliaa pall claaly gl S 5
any Akalal) i) 5 Aalal) clad) aladinly 53 sadl Galie o adiey 5ill 23 5a0 el) a5 Gl Y ol 525 5
o el 3 laxie 5 A) Bas gl sl 5 (aaidl maall) dlee aladiil (Say kAl Al saa gl il
Lae ¢ Jlad IS5 L) 5 el)) 5 (e B2ELY) 8 acloy o Sy @lld ¢ ellaal e g sind il dmaall Cilas)
Al 0588 Apal) dls jo)

Naive 25 blall Laall Clas gl 5l AV aled Clae)l sd dased aladinl iy ¢ dag sl oda b
s Sy 2ol @ e Lednhd o5 <l jylsall 032 Random Forest, J48, Decision Table , SVM s Bays
L) Cile sane (el Al Gl bl il e J seanl] e Lgiadles i Al (5l 5 3508 Ganliall)
Ungio 8 Aagiil) 40)lie aey iliill 8 adis) @llia o)) (A i V) alail) il) oad Lo dadlaall 5 Aalleall ye
(e Jazadl cilS) ghaiall Uings 4 dagiill o goal) (e ladldl Jaxa e 1laic) (Hata, et al, 2012) ae skl
.Random Forest alaaiuls agailss

CilS caaall 5 S byl de sanad dallaall y 5 Lgiallae Gaw 3 ULl Cile sane G 45 5aa0) 3L
Al ey dadladl bl o &85) sliaYl 5 daledl pe clild) (e Sl Jadl dalladd) culal)
2 e J panll bl de gandd Al dallaall 5l gl an g0 Y 3l gal 5l1 (gl ¢ anall 3 paaa LA Cile sanal
Sl

i 5l s Random Foresta Usall Jaea s 482l dua) 5o Juadl (o e 5 aiil) e il o el
Naive Bays s» »a¥ 5J48 , SVM, Random Forest , Decision Table s iyl sall Ll

VI

www.manaraa.com

Abstract

Aldiabat, Samah Abedalaziz. Investigation for Software Fault Proneness Prediction at Method
Level. Master of Computer Information Systems, Thesis, Department of Computer Information
Systems, Yarmouk University, 2018. (Supervisors: Prof. Dr. Bilal A. Abul-Huda, Dr. Mohammed
A. Akour)

Software fault prediction is focusing on examining and testing files, packaging, classes or
methods to show the probability of existing faults or not. That led to build a predictive model
based on quality metrics by using internal attributes and faulty data. After predicting the faulty
method, the correction process can be used to inspect and test the method. When effort focuses
on the methods that have faults, it can help in utilizing and managing the software resources

effectively and that will enhance the maintenance phase to be easy.

In this thesis, five machine learning algorithms are used which are, Naive Bays, Random
Forest, J48, Decision Table and SVM to predict the faulty methods. These algorithms applied on
Java Datasets (Large and Small scales) contains object oriented metrics (B, CALL, CLOC,
COM_RAT, D, E, EXEC, EXP, IV(G), LOC, N, n, NCLOC, NP, STAT, QCP_CRCT, QCP_MAINT,
QCP_RLBTY, TCOM_RAT, V,V(G)), that normalized and preprocessed to gain better results.
Comparisons done between preprocessed and unprocessed datasets depending on the machine
learning algorithms and there was a variation in the results. The result in our developed approach
is compared with (Hata, et al, 2012) depending on error rate. It is obvious that the result in our

developed approach using Random Forest is better than their results.

Based on comparison between preprocessed and unprocessed datasets for the large scale
as, it is obvious that the processed data is a little bit better than the unprocessed data for the

large scale datasets. While based on comparison between processed and unprocessed data for
IX

www.manaraa.com

the small scale datasets as, it is obvious that there is no effect of preprocessing the dataset to get

better results.

The evaluation measures results show that for the accuracy and error rate the best
algorithm is Random Forest and the descending order for the algorithms is: Random Forest,
Decision Table, J48, SVM and the last one is Naive Bays. While for the precision the descending
order is Naive Bays, Random Forest, J48, SVM and Decision Table. For the recall the order is
Decision Table, SVM, J48, Naive Bays and Random Forest. The false-positive order is Decision
Table, SVM, J48, Random Forest and Naive Bays. F-measure order is Random Forest, SVM,
Decision Table, J48 and Naive Bays. Finally, the specificity and True-negative order is Naive

Bays, Random Forest, J48, Decision Table and SVM.

Keywords: Fault prediction, Fault Proneness, machine learning, Object Oriented Metric

www.manaraa.com

Chapter One

1. Introduction:

1.1 General Overview

Software systems significant role in the applications that have critical mission,
demands working in a reliable way with their requirements. A comprehensive assessment
for these software systems using manual testing or automatic techniques is needed for
assuring the software quality. To verify the areas that have problems in the system under
the development, predicting the modules that are fault prone by software quality models is
needed to help the experts. Therefore, by enforcing the software quality models at early
stages of the software development life cycle might help in producing reliable software by
efficiently removing faults.

Software testing is the procedure of executing the program with the purpose of
detecting errors and making sure the software does what it supposes to do. Typically,
programs include large number of errors. One of the reasons for continuing these errors
over the software development life cycle is the restrictions of the testing resources, such as
the time and cost. To produce software system with high reliability, high quality and low
cost, the resources should be used in an effective way through concentrating the effort of
testing on the system parts that contains more errors (Banitaan, et al, 2013).

Software quality can be measured according to different attributes; one of these
attributes is the fault proneness. Fault proneness is defined as “the probability of fault

detection in a class”. This means that fault proneness is the probability to be fault prone.
1

www.manaraa.com

The importance of measuring the software fault proneness can be clear in minimize the cost
and improve the overall testing process effectiveness. Fault proneness of the software
cannot be measured directly, It can be estimated by using the software metrics to provide
descriptions of the attributes of the program, and that descriptions are quantitative.
(Malhotra and Jain, 2012).

By taking into account software size and complexity, producing software with high
quality without faults is a complex task and big challenge to achieve. The most costly and
challenging phase in the system development life cycle is the maintenance phase. To deal
with this challenge, we must identify which parts of source code that perhaps include faults
and need to be changed. Software fault prediction is focusing on examining and testing
files, packaging, classes or methods to show the probability of existing faults or not. The
solution is to build a predictive model based on quality metrics by using internal attributes
and faulty data that collected previously, the most repeatedly dependent variable is the fault
proneness. After predicting the faulty class, the correction processcan be used to inspect
and test the class. When effort focuses on the classes that have faults, it can help in utilizing
and managing the software resources effectively and that will enhance the maintenance
phase to be easier than before (Alenezi, et al, 2014).

There are different approaches for prediction in the area of software engineering
like, correction cost prediction, test effort prediction, reusability prediction, fault prediction,
quality prediction, security prediction and effort prediction. But most of these approaches
need more research to reach the model that is robust. The most common research area in

the prediction approach is the software fault prediction (Catal, 2011).

www.manaraa.com

Producing a system with high robustness, reliability, efficiency and with no errors is
critical. So fault prediction techniques must use in an efficient and accurate way.The
purpose of the software fault prediction is categorizing the modules that under the test into
error free or error prone modules. This categorization of the modules is a major step in the
early phases of the software development life cycle especially in the testing phase, as
exhaustive testing is impossible and costly. Machine learning techniques are used widely
for building predictive models (Akour, et al, 2017).

Accurate prediction model of the faulty software depends on the availability of the
software metrics information; also it depends on the quality metrics. So the main part of the
process of model building is selecting the subset of software metrics and that will save the
time in collecting and managing them. And select the appropriate classifier that known as
the fault predictors from the machine learning techniques (Alenezi, et al, 2014).

Most researches investigate the fault prediction field, especially on the class level
and used metrics and machine learning techniques to build the predictive model. There is a
noticeable lack of research that are interests in the fault prediction on the method level and
these researches not using all the techniques that used in the class level. We assume that
addressing the fault proneness at the method level might be providing more promises. Since
the method level is better than the class level, because of its effectiveness in the quality
assurance. File level prediction is more efficient than package level prediction. So, method
level prediction is more efficient than file level and package level prediction, and that
means finding more bugs through the activities of quality assurance in the method level
prediction when same amount of lines of code investigated is possible (Hata, et al, 2012).

We will investigate if the fault proneness prediction on the method level will be efficient

www.manaraa.com

according to the importance of the fine grained level and its effectiveness in discovering
more faults because of the more details in the method level rather than the class level.

The remainder of this thesis is organized as follows; background, problem statement. The
literature review was in chapter two. Chapter three presents our methodology, while the
experiments discussed in chapter four. In chapter five the results discussion was presented

and finally the conclusion and future work were in chapter six.

1.2 Background

Software dependency and complexity cause in increasing the need to deliver
maintainable software, with high quality and low cost. Therefore, software fault prediction
is considered as an important activity for improving the quality of software and reducing
the effort of maintenance before deploying the system. To build a predictive model,
metrics, predictors, faulty data is needed. Software fault prediction can categorize the
module or the class to be either ‘not fault-prone’, or ‘fault-prone’. Techniques of machine
learning can be used in software fault proneness prediction (Malhotra, 2015, Rathore and
Kumar, 2017).

There are different approaches for prediction in software engineering like,
correction cost prediction, test effort prediction, reusability prediction, fault prediction,
quality prediction, security prediction and effort prediction. But most of these approaches
need more research to reach the model that is robust. The fault data in the module
expressed by 1, else 0 when the error is notified through the test of the system or the field.
The software metrics are utilized as the independent variables and the fault data is utilized

as the dependent data in modeling prediction.
4

www.manaraa.com

Thus, the need of version control system like Subversion for storing the source
code, a change management system like Bugzilla for recording the faults and the tool that
collecting the product metrics from the version control system. One of the techniques for
software fault prediction is applying X-means method for clustering modules and
identifying the top number of cluster. After that, checking the mean vector of every cluster
against vector of metrics thresholds is necessary. So if the mean vector has one metric at
least higher than the threshold value of the same metric, the cluster is predicted as “fault
prone”. Another clustering methods used are the K-means and fuzzy. Experiments show
that by using the X-means clustering, the software fault prediction that is not acting under
supervision can produce efficient results and be completely automated. By using the
algorithms of supervised classification, the model of prediction is built with the prior labels
of fault and prior software metrics in machine learning (Catal, 2011).

One of the machine learning techniques is called ensemble learning which is
combines more than one algorithm of machine learning and trained them for producing
output better than the output of anyone of them separately. There are two types of ensemble
machine learning techniques, heterogeneous and homogenous ensembles. For the
heterogeneous ensemble, it develops each type of the base learner in different way by using
several techniques of Machine learning. By merging each prediction of the base learner
together, the dataset and the prediction are created. While for the homogeneous ensemble, it
uses different subsets of the whole training dataset for each base learner. To produce
satisfied conditions and to reach the suitable ensemble, there are two vital and primary

conditions; which are the accuracy and diversity (Akour, et al, 2017).

www.manaraa.com

The most repeatedly dependent variable is the fault proneness. When predict the
fault proneness classes, it can focus on the chance of verification and validation in finding
the faults. After predicting the faulty class, the actions of correction can be used to inspect
and test the class. When the effort focuses on the classes that have faults, it can help in
utilizing and managing the software resources effectively and that will enhance the
maintenance phase to be easier than before (Alenezi, et al, 2014).

For estimating the fault proneness, model predicted using the QMOOD (Quality
Model Object Oriented Design) and OOCK (Object Oriented Chidamber and Kemerer)
metrics by applying six methods of machine learning and one method statistic. Different
attributes can measure the software quality like, testing effort, fault proneness and testing
effort. Machine learning is used in several domains such as, bioinformatics, retail
companies, and financial institutions. The methods of machine learning used for predicting
the accuracy of the predicted model (genetic programming, multilayer perceptron, support
vector machine, adaboost, bagging and random forest).Apache POI dataset was used for the
applications that extract text like, content management systems, web spiders and index
builders. The techniques of machine learning used for predicting the accuracy of models
when used more than one metric together. Decision trees have been used to predict the fault
proneness, while the artificial neural networks used in predicting value of fault proneness
continuous measure. As for the support vector machine, it is used to perform class
classification to non-fault prone and fault prone. The other techniques of machine learning
used for predicting the classes with faults like, boosting, random forest and bagging. These

techniques can be used in WEKA tool (Malhotra, and Jain, 2012).

www.manaraa.com

1.3 Problem Statement

1.3.1 Research Purpose

To the best of our knowledge, the work presented in this thesis trying to be a new
contribution in the field of method level addressing for prediction purposes. This thesis
tried to predict the fault proneness on the method level using object oriented metrics (B,
CALL, CLOC, COM_RAT, D, E, EXEC, EXP, IV(G), LOC, N, n, NCLOC, NP, STAT,
TCOM_RAT, QCP_CRCT, QCP_MAINT, QCP_RLBTY, V,V(G)), shown in table 1
below, as features applied on JAVA datasets and using several machine learning techniques
to build the predictive model such as Decision Table, SVM, Naive Bays, J48 and Random
Forest.

These metrics were chosen on the base of the experiment and information gain
using WEKA tool which is a good measure for deciding the relevance attributes with
maximal information and most effective features and removes the unrelated features that
haven’t any effect; after running the 44 extracted metrics from Intellij IDEA tool on WEKA
tool and see how the variation and the results were, we decided to choose the 18 metrics
that have an effective results.

Also, this thesis tried to compare between these techniques to determine the best
technique for software fault proneness prediction on the method level. As another aim,
planning to compare between the performance of the historical metrics and the object
oriented metrics that applied on different datasets (JAVA Open Source Projects) to

conclude the most appropriate metrics for the software fault proneness prediction on the

www.manaraa.com

method level through measuring the performance measures such as accuracy, error rate,

precision, recall, F-measure, False positive, True Negative and Specificity.

Table 1: Object Oriented Metrics used (jetbrains.com/idea, 2018)

Calculates the Halstead Bugs metric for a method. The Halstead
1 B Bugs is intended as an estimate of the number of bugs in a method.
In practice, it has usually been found to underestimate. (B=V/3000)

Calculates the total number of method call expressions in each
method.

Calculates the number of lines of comments in each method.
Whitespace is not counted for purposes of this metric.

Calculates the ratio of lines of comments to total lines of code in
each method. Whitespace is not counted for purposes of this metric.

Calculates the Halstead Difficulty metric for a method. The Halstead
5 D Difficulty is intended to correspond to the level of difficulty of
understanding a method. (D=(n1/2)*(N2*nz))

2 CALL

3 CLOC

4 | COM_RAT

Calculates the Halstead Effort metric for a method. The Halstead
6 E Effort is intended to correspond to the level of effort necessary to
understand a method. (E=D*V)

Calculates the total number of executable statements in each

7 EXEC method. Executable statements are defined to be any non-control
statement.
8 EXP Calculates the total number of expressions in each method.

Calculates the design complexity of a method. The design
complexity is related to how interlinked a methods control flow is

9 W(G) with calls to other methods. Design complexity ranges from 1 to
v(G), the cyclomatic complexity of the method.
10 LOC Calculates the number of lines of code in each method. Comments

are counted for purposes of this metric, but whitespace is not.

Calculates the Halstead Length metric for a method. The Halstead
11 N length of a method is defined as the total number of operators and
operands in a method. (N=N1+N>)

Calculates the Halstead Vocabulary metric for a method. The
12 n Halstead VVocabulary of a method is defined as the total number of
distinct operators and operands in a method. (n=n1+ny)

Calculates the number of non-comment lines of code in each
method. Comment and empty lines are not counted by this metric.

14 NP Calculates the number of parameters for each method.
8

13 NCLOC

www.manaraa.com

15

STAT

Calculates the total number of statements in each method.

16

TCOM_RAT

Calculates the ratio of lines of comments to total lines of source
code in each method. Whitespace is not counted for purposes of this
metric.

17

QCP_CRCT

Calculates the Quality Criteria Profile (Correctness) of a method.
This is a synthetic metric, designed to estimate the difficulty of
determining the correctness of given method. Lower scores are
better. Quality Criteria Profile (Correctness) is defined as:
QCP_CRCT =D + CONTROL + EXECUTABLE + (2*V(g))

18

QCP_MAINT

Calculates the Quality Criteria Profile (Maintainability) of a method.
This is a synthetic metric, designed to estimate the difficulty of
maintenance for a given method. Lower scores are better. Quality
Criteria Profile (Maintainability) is defined as: QCP_MAINT =
(3*N) + EXEC + CONTROL + NEST + (2*V(g)) + BRANCH

19

QCP_RLBTY

Calculates the Quality Criteria Profile (Reliability) of a method.
This is a synthetic metric, designed to estimate the reliability of
given method. Lower scores are better. Quality Criteria Profile
(Correctness) is defined as: QCP_RLBTY = N + (2*NEST) +
(3*V(g)) + BRANCH + CONTROL + EXEC

20

Calculates the Halstead Volume metric for a method. The Halstead
Volume is intended to correspond to the size of a method, and is
defined as N * log(n), where N is the Halstead Length metric for the
method and n is the Halstead VVocabulary metric. (V=N*logzn)

21

V(G)

Calculates the cyclomatic complexity of each non-abstract method.
Cyclomatic complexity is a measure of the number of distinct
execution paths through each method. This can also be considered as
the minimal number of tests necessary to completely exercise a
method's control flow. In practice, this is 1 + the number of if's,
while's, for's, do's, switch cases, catches, conditional expressions,
&&'s and ||'s in the method.

N7 = the total number of operators
N = the total number of operands

+ 7); = the number of distinct operators

» 7)2 = the number of distinct operands

www.manaraa.com

1.3.2 Research Motivation

Many researchers interest in the software fault prediction to be the evolutionary
research because of the importance of this topic in the software field. They build predictive
models to predict the fault, defect or bug in the software for many reasons that useful for
the software development life cycle. Most of the researches in this topic are examined on
the class level and package level, but rarely found researches that examine the predictive
models on the method level. Fault proneness prediction on the method level examined
using some random forest technique combined with historical metrics (Hata, et al, 2012).
But they didn’t examine more than one machine learning techniques combined with object

oriented metrics. This thesis aims to get new good results by using the proposed technique.

1.3.3 Research Questions

e Do object oriented metrics predict the software fault proneness on the method level
effectively?

e Which category of metrics is the best for the fault proneness prediction on the
method level?

e To which extent the studied metrics accomplish better performance in terms of
software fault proneness prediction?

e Which fault proneness prediction techniques is the most suitable for the method

level according the dataset applies on?

10

www.manaraa.com

1.3.4 Research Significance

This thesis desires to study the process of enhancing the fault proneness prediction
on the method level and producing high quality and reliability software, and how that can
leads to decrease the cost and time of the maintenance and complexity when predicting the

fault prone methods at the early stage of the software development life cycle.

1.3.5 Operational Definitions

- Software defect: “an imperfection or deficiency in a software product where the
product does not meet its requirement or specifications and needs to be either repaired
or replaced” (Hong, 2017).

- Software testing: is the procedure of executing the program with the purpose of
detecting errors (Banitaan, et al, 2013).

- Software fault proneness: “the probability of fault detection in a class” (Malhotra and
Jain, 2012).

- Software fault proneness prediction model: a model of classification the software
design entities into two categories; fault prone and non-fault prone (Scanniello, et al,
2013).

- Random Forest: “ensemble classifier that manipulates its input features and uses
decision trees as its base classifiers” (Hong, 2012).

- Error Seeding: “is one of the white box testing which is very fascinating to researcher

due to its approach to improve quality of software” (Gupta, 2016).

11

www.manaraa.com

Chapter Two

2. Literature Review

2.1 Software fault, bug and defect

Software defect as defined in (Hong, 2017) is “an imperfection or deficiency in a
software product where the product does not meet its requirement or specifications and
needs to be either repaired or replaced”. The model of software fault prediction based on
the metrics received the modules or the classes that quantified as a metric vector and
predicted the fault information. Classifications that are binary have an importance in the
researches which are determine if the module is fault prone or not. Defect attributes such as
priority or severity is not considered in the modules that predict the absence or presence of
the fault and that is a main problem in it. Defect severity is defined as “A measure of the
impact a defect has on a system and its users”. The capability of predicting the modules that
fault proneness in different categories of severity like low, high and not fault prone is much
better than binary classifications, because not all the defects have same severity. Through
predicting the critical problem in the system, the fault prediction model of the severity
enables the resource allocation, quality testing and refactoring with lower cost.

It is difficult to find bugs and fix them. Also, it is costly. And recently, there are
several techniques and tools developed to find bugs automatically through analyzing the
source code. (Rutar, et al, 2004) applied five different tools to find bugs, on various java
programs especially Bandera, ESC/Java 2, FindBugs, JLint, and PMD, They used diversity

of tools to be able to find warnings and bug reports. Their experimented results offer that

12

www.manaraa.com

the tools didn't cross over another means that the tools almost detect non overlapping bugs.
They discussed for each tool which techniques is based on, and they proposed the output of
the tools that affected by each techniques. finally they proposed a meta tools that joins the
output from the tools with each other’s, by take into account set of standards that many
tools alert about such as particular lined of code, classes and methods.

Models that have defects of course cause failures in the system, increase the cost of
the maintenance and development and decrease the satisfaction of the customers. In order
to improve quality assurance of the software and to help the developer to focus on the fault
prone modules by applying the activities of the quality assurance on it, the fault prediction

model is needed (Koru and Liu, 2005).

2.2Software Fault Proneness prediction

Different attributes can measure the software quality and one of them is the
software fault proneness. Software fault proneness is considered as dependent variable and
it defined as “the probability of fault detection in a class” (Malhotra and Jain, 2012).

Testing, software quality and software fault proneness become more important in
recent years regarding of improving efficiency of the process and minimizing the cost.
Software fault proneness estimating in the model is significant to minimize the cost and to
improve the efficiency of the process of software testing. We cannot measure the software
fault proneness of the software directly. We can estimate it by using the software metrics to

provide descriptions of the attributes of the program, and that descriptions are quantitative.

13

www.manaraa.com

Most of the studies work on finding the suitable software metrics that used in predicting the
fault proneness (Gondra, 2008, Singh, et al, 2009).

According to (Hong, 2012) software fault proneness prediction model is a model of
classification the software design entities into two categories; fault prone and non fault
prone. The capability of predicting the modules that fault proneness in different categories
of severity like low, high and not fault prone is much better than binary classifications,

because not all the defects have same severity (Scanniello, et al, 2013).

Software fault proneness may be predicted using machine learning methods by
using one metric or a more than one metric together (Malhotra and Jain, 2012, Gondra,
2008, Singh, et al, 2009, Rathore and Kumar, 2017). For example, decision table have been
used to predict the fault proneness, while the artificial neural networks used in predicting
value of fault proneness continuous measure (Malhotra and Jain, 2012).

In (Gondra, 2008), the author used the support vector machine (SVM) technique to
support the software fault proneness and classified the module to be with errors or with no
errors. In (Singh, et al, 2009), they found that SVM is achieving high accuracy in
predicting the fault proneness of the software. They found the metrics that are related to
fault proneness on the class level which are, SLOC (Source Lines of Codes), RFC
(Response For Class) and CBO (Coupling Between Object). Also, they concluded that
SVM model achieves the feasibility, adaptability to the object oriented systems and it is
useful for the fault proneness prediction for the classes.

Malhotra, et al, 2010 used the object oriented metrics to predict the fault proneness
and used the SVM machine learning technique to build the model of fault proneness,

assessing the software quality and to decide the feasibility and adaptability of this study.

14

www.manaraa.com

They use the ROC (Receiver Operating Characteristic) evaluation measure to validate the
SVM results and consider the accuracy of the predicted results from the ROC curve. Also,
they considered the accuracy of fault proneness predicting using object oriented metrics and
classified the faults according the severity into, low severity, medium severity and high
severity. The dataset used is KC1 NASA dataset (C++ dataset) to evaluate their work. They
found that SVM is predicting classes with faults with high accuracy. The object oriented
metrics that are related to fault proneness are SLOC, RFC and CBO while DIT (Depth of
Inheritence Tree) and NOC (Nomber Of Children) are not related to fault proneness. The
model that predicted with concern to the faults with high severity will has low accuracy.
Therefore, the best result in fault proneness prediction is for the faults of medium severity.

The appropriate metrics for the software fault proneness prediction are process
metrics such as; size, complexity, design features, performance, and quality level and
product metrics such as; Mean Time to Failure, Defect Density, Customer Problems and
Customer Satisfaction (Luo, et al, 2010).

The usefulness of the object oriented metrics for the software fault proneness was
studied by (Yu, et al, 2002). They used a tool to collect the metrics of the software. They
chose 5 attributes of object oriented software; reuse inheritance, cohesion, coupling, and
size the software. And used 8 metrics; 2 of them are traditional (fan in and LOC) and the
other 5 are Chidamber and Kemerer for object oriented metrics (CBO, DIT, NMC, RFC
and NOC).

Singh, et al, 2009, compared the performance of the ANN predictive model with the
DT, SVM and LR predictive models. They used 12 systems in java as a dataset and object

oriented metrics of Chidamber and Kemerer to find the relationship between these metrics

15

www.manaraa.com

with the fault proneness prediction on the class level they concluded that the LOC and RFC
are the best metrics to the fault proneness prediction. And NOC and DIT metrics are not
useful in the fault proneness prediction. Also, they concluded that DT, SVM and ANN are

better than the LR model in the performance of predicting the fault proneness.

Rathore and Kumar, 2017, proposed a recommendation system for helping the
researchers to select the suitable technique of fault prediction while building the predictive

model on the base of decision table concept.

2.3Software Fault Prediction using Machine Learning Techniques

Machine learning is used in several domains such as, bioinformatics, retail
companies, and financial institutions. The methods of machine learning used for predicting
the accuracy of the predicted model such as, genetic programming, multilayer perceptron,
support vector machine, adaboost, bagging and random forest (Malhotra and Jain, 2012).

A problem that attracted researchers which considered a challenge is fault
prediction. Researchers proposed techniques of fault prediction and evaluated their
performance using several datasets. They used the ensemble methods through applying
three base learners which are the radial basis function neural network, artificial neural
Network and logistic regression analysis. Also, they studied the fault prediction model
applied on 45 projects on the class level and proposed a model for cost evaluation of the
quality assurance of the software. They used the metrics of the source code as input for the
fault prediction model. And these metrics are considered as independent variable, while the

class category is considered as dependent variable. The dataset they used is from the

16

www.manaraa.com

repository of PROMISE that contains 45 open source projects from real life. They proposed
a framework to choose the suitable source code metrics that are effective in the fault
prediction model. They concluded that the most relevant metrics are LCOM (Lack of
cohesion of methods), WMC (Weighted Methods per Class), CBO and RFC (Kumar, et al,
2017).

Prediction is a significance process in the software development to avert the
confusion in the process of the software, to enhance quality and to minimize the time
complexity. The generality of the models of fault prediction is used the dataset from
previous for predicting the faults. The prediction models is useful in improving the
approach of the design through classify the alternative approach to the models of faults and
to improve the quality. The process of software development can be identified whether if it
in the right way or not through measuring the changes that happened. The quality is the
major factor for the success of the software, on the basis of the accurate work of the
software for the reason that was made. The authors used 4 classifiers (Lazy K-Star,
Random forest, Naive Bayes and J48) and compared between them to make the prediction
with high quality and by using the dataset of NASA and WEKA tool with the measures of
F-measure, recall, precision, false positive rate and true positive rate to detect the accuracy
in predictions. They found that the Naive Bayes was appropriate for the dataset which is
small and the random forest was appropriate for the dataset which is large (Sathyaraj and
Prabu, 2015).

One technique of the machine learning techniques is called ensemble learning
which is combines more than one algorithm of machine learning and trained them for

producing output better than the output of anyof them separately. There are two types of

17

www.manaraa.com

ensemble machine learning techniques, heterogeneous and homogenous ensembles. For the
heterogeneous ensemble, it develops each type of the base learner in different way by using
several techniques of Machine learning. By merging each prediction of the base learner
together, the dataset and the prediction are created. While for the homogeneous ensemble, it
uses different subsets of the whole training dataset for each base learner. To produce
satisfied conditions and to reach the suitable ensemble, there are two vital and primary
conditions; which are the accuracy and diversity. The authors compared between 3 of
measures of ensembles; boosting, bagging and stacking and evaluated the performance of
them with 11 base learners for the software defects prediction on the module level using the
NASA dataset. They found that boosting improves the performance better than the bagging
method in the accuracy. While for the stacking, the random forest is the best classifier for
improving the software defect prediction (Akour, et al, 2017).

For selecting the software metrics subsets that help in predicting the faulty classes,
(Catal, 2011)chose eight OSS (open source software) systems that have twenty internal
attributes and using the feature selection technique, then compared several classifications
since the classification is the most popular technique in machine learning. It is known as
“supervised statistical learning”. It trains the model using the data that class defined in
advance. The data is useful for the training of learning algorithm, and that causes of
creating the model that used in classifying the testing instances when the class labels value
is unknown. He compared several classifiers; which are known as the fault predictors with
high performance. The author compared between the classifiers based on two measures;
AUC (Area under receiver) and F-measure (precision and recall). The most effective

predictor for the accuracy in the field of software fault prediction is the AUC (Catal, 2011).

18

www.manaraa.com

Many methods were proposed for developing the predictive models of the software
fault proneness, the statistical techniques and machine learning and others. Machine
learning techniques are used to find the most appropriate metrics that predicts with the
errors. One of the machine learning techniques they used is the ANN and they used
historical data which is NASA dataset and applied the sensitivity analysis to determine
which software metric is important in the software fault proneness. Then they used the
SVM technique to support the software fault proneness and classified the module to be with
errors or with no errors. After the comparative experiment they found that the effectiveness
of the SVM is better than the ANN in the classification mission. The concentration of
machine learning field on the research of the algorithms which improve the performance of
them at the task they do by their experience. Over fitting problem is when the training data
has no errors and the function doesn’t generate the values correct for the data which unseen
previously. While, the generalization is when the function may generate the values correct
for the data which is new and not in the training data. And the hardest problem is having a
good generalization function. When the function complexity increases, the training errors
decrease. But when the generalization error increases, the complexity increases. The
technique that reduces the over fitting problem is the cross validation. Cross validation is
the set of disjoint from training data that used for the selection of a model. The useful of
using machine learning is to select the most appropriate software metrics that indicates the
software fault proneness by using the sensitivity analysis and to implement that model of
the fault proneness prediction on the base of these metrics (Gondra, 2008).

Software classifications used metrics of complexity as input vectors and used

algorithms applied on sufficient training data on the base of statistical methods and

19

www.manaraa.com

machine learning like case-based reasoning, support vector machines, logistic regression,
discriminated analysis, fuzzy classification, Bayesian models, decision table, neural
networks and genetic programming to build the predictive model. Based on researches used
NASA data set, Random Forest technique is better in performance of prediction comparing
with SVM and MLP. Random Forest is defined by(Hong, 2012) as “ensemble classifier that
manipulates its input features and uses decision table as its base classifiers”. Ensemble
techniques are techniques for classification to improve the accuracy of the classification
through aggregating multiple classifiers predictions. They constructed the random forest
model by using the WEKA tool which is a machine learning tool and used a dataset from
previous research.

Software fault proneness is an example of the software quality attributes and
predicted by using software metrics. Machine learning is used to predict the fault proneness
probability. They evaluated the performance of the support vector machine technique by
using one dataset of NASA which is KC1 and found the relation between the object
oriented metrics and the models of fault proneness. Also, they evaluated the predicted
model performance by using AUC, sensitivity, precision, specificity and completeness.
They found that SVM is achieving high accuracy in predicting the fault proneness of the
software. Support vector machine is a tool used for classifying the data. It used in a
successful way in different applications such as, text classification, face identification,
identification of organisms, Chinese character classification and pattern recognition. SVM
separates the dataset to 2 categories. They found the metrics that are related to fault

proneness which are, SLOC, RFC and CBO. Also, they found that SVM model achieves

20

www.manaraa.com

the feasibility, adaptability to the object oriented systems and it is useful for the fault

proneness prediction for the classes (Singh, et al, 2009).

2.4 Software Fault Prediction Using Metrics

The appropriate metrics for the software fault proneness prediction are process and
product metrics. The datasets took from MDP repositories (NASA Metrics Data) which
contain 11 datasets. To produce more useful predictive model, metrics and attributes must
mined to be more useful for the domain that applied on it and to avoid the metrics or
attributes that are not useful or make noise in the analysis. They used 9 techniques of data
reduction, and then used Naive bays as a data miner and classifier to build the predictive
model for evaluating the methods of metrics reduction. For feature selection, they used CFS
as filter method and J48 as wrapper method. And to select the subset, they used the genetic
algorithm and best first. PCA and DWT are two effective methods for feature extraction
used in their study (Luo, et al, 2010).

Singh, et al, 2009, compared the performance of the ANN predictive model with the
DT, SVM and LR predictive models. They used 12 systems in java as a dataset and object
oriented metrics of Chidamber and Kemerer to find the relationship between these metrics
with the fault proneness prediction on the class level they concluded that the LOC and RFC
are the best metrics to the fault proneness prediction. And NOC and DIT metrics are not
useful in the fault proneness prediction. Also, they concluded that DT, SVM and ANN are

better than the LR model in the performance of predicting the fault proneness.

21

www.manaraa.com

Sureshm, et al, 2014, assessed the impact of the Chidamber and Kemerer metrics on
predicting the software fault prediction for the open source systems. They used machine
learning techniques for predicting faults (radial basis function network, functional link
artificial neural network and artificial neural Network) and classifying faults (probabilistic
neural network). The dataset used contains of 965 classes. 5 parameters used to measure
performance used (statistical analysis, precision, correctness, completeness, accuracy and
R? Statistic). They used MATLAB coding to support machine learning and statistical
methods for fault prediction. They concluded that WMC is the best useful from the 6 CK
metrics for fault prediction.

Boucher and Badri, 2016, focused on the effect of code metrics threshold, because
the models that based on it will be understood and implemented by the programmers or
software experts. Also, it can provide them with the reason of why the class is fault prone.
Threshold cannot be used for all projects and not all thresholds are good for fault
prediction. In their study, they compared two of the thresholds algorithms and considered
them in predicting faults. They used 5 different systems as datasets (Eclipse JDT Core,
JEdit, KC1, Apache IVY and Apache ANT) and Bayes Network as machine learning
classifier for fault prediction to give good results. Also, they assess the validity of the
method of Alves Rankings and ROC in software fault prediction and found that the method
of Alves Rankings gives good results and considered them as threshold techniques that do a
good job.

Jureczko and Spinellis, 2010, take into account object oriented metrics to build
defect prediction models. the models evaluated on five application and eleven open source

projects, a model built according to the data collected from version i of a project has been

22

www.manaraa.com

estimated by predicting the bugs in version i+1. Experimented results displayed that after
applying regression models with determined class size factor they can find 80% of bugs in
10.56% to 54.93% (u=36.086; 6=10.435) of the classes. They found that WMC and LOC
are considered as factors for the class size in the models of fault detection.

Zimmermann and Nagappan, 2008, proposed a low level graph to enhance network
analysis which these graph may be used to allocate resources effectively and enable the
manager to recognize central program units that are more helpful to determine bugs. They
evaluated their study on Windows Server 2003, they reached that the recall for models
structured from complexity metrics is less 10% points than for models structured from
network measures. also, network measures recognized that 60% of the binaries that

developers of windows rated as critical , more than identified by complexity metrics.

23

www.manaraa.com

Chapter Three

3. Research Methodology
3.10verall Research Design

The proposed methodology shown in figure 1 that used in this thesis is explained in
this chapter with details about all phases. Our proposed technique is fault proneness

prediction model that used the Random Forest, J48, SVM, Decision Table and Naive Bays

machine algorithm tested with the object oriented metrics to get the best results.

Figure 1: Research Methodology

24

www.manharaa.com

3.2Research Phases

3.2.1 Phase one: Collecting Java codes

Fifteen Java codes have been collected on the base of predicting faults on the
method level using machine learning algorithms. Three codes of them (Ant, Cassandra and
Wicket) are collected from (Hata, et al, 2011). The codes contain faults caused by

manually mutation. Figure 2 shows an example of java source code.

E

gl:\java projects\done\apache-ant-1.10.5\src\main'\org\apache\tools\ant\input\ MultipleChaicelnputRequest java - Notepad++ | 0|8 X ‘
File Edit Search View Encoding Language Settings Tools Macro Run Pluging Window 7 X
LR LE L B R = ER sl R Aol =1E

FE kleChokce st [FRpE e e |

30 [Hpublic class MultipleChoiceInputRequeat extends InputRequest | &

31 private final LinkedHashSet<5tring» choices;

32

33 E| FAdd

34 * iparam prompt The prompt to show to the user. Must not be null.

5] * @iparam choices holds all input values that are allowed.

36 # Must not be null,

37 * fideprecated Use {8link #MultipleChoiceInputRequest(String,Collection)} instead

38 r */

39 @Deprecated

a0 H public MultipleChoiceInputRequest(String prompt, Vector<String» choices) { E

41 this({prompt, (Collection<String») choices);

[- 1

43

44 Jx¥ .

45 * fiparam prompt The prompt to show to the user. Must not be null.

44 * @iparam choices holds all input values that are allowed.

47 * Must not be null,

48 - *f L

43 public MultipleChoiceInputRequeat(String prompt, Collection<String» choices) {

50 E super (prompt) ;

51 H if (cholces == mull) {

52 throw new IllegalArgqumentException("choices must not be null");

EEE }

54 this.choices = new LinkedHash3et<>(choices):

55 } v
Java source file length: 2410 lines: 73 ln:32 Col:2 Sel:0]0 Unix (LF) UTF-8 NS

Figure 2: Java source code

25

www.manharaa.com

Apache Ant is “a Java library and command-line tool whose mission is to drive
processes described in build files as targets and extension points dependent upon each
other. The main known usage of Ant is the build of Java applications. Ant supplies a
number of built-in tasks allowing to compile, assemble, test and run Java applications”

(ant.apache.org, 2018).

Apache Cassandra, “a top level Apache project born at Facebook and built
on Amazon’s Dynamo and Google’s BigTable, is a distributed database for managing large
amounts of structured data across many commodity servers, while providing highly
available service and no single point of failure. Apache Cassandra offers capabilities that
relational databases and other NoSQL databases simply cannot match such as: continuous
availability, linear scale performance, operational simplicity and easy data distribution

across multiple data centers and cloud availability zones” (cassandra.apache.org, 2016).

Wicket is “an open source Java component oriented web application framework that
powers thousands of web applications and web sites for governments, stores, universities,
cities, banks, email providers, and more. Wicket is one of the few survivors of the Java
server side web framework wars of the mid 2000's. Wicket is an open source, component

oriented, server side, Java web application framework™ (wicket.apache.org, 2018).

Apache Log4j is “a Java-based logging utility. It was originally written by
CekiGulcu and is part of the Apache Logging Services project of the Apache Software
Foundation. Log4j is one of several Java logging frameworks”

(logging.apache.org/log4j/2.x, 2018).

26

www.manaraa.com

http://cassandra.apache.org/
http://en.wikipedia.org/wiki/Apache_Cassandra#History
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html
https://en.wikipedia.org/wiki/Java_platform
https://en.wikipedia.org/wiki/Computer_data_logging
https://en.wikipedia.org/w/index.php?title=Ceki_G%C3%BClc%C3%BC&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Apache_Logging_Services&action=edit&redlink=1
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Java_logging_frameworks

The goal of MARC4J is “to provide an easy to use Application Programming
Interface (API) for working with MARC and MARCXML in Java. MARC stands for
MAchine Readable Cataloging and is a widely used exchange format for bibliographic
data. MARCXML provides a loss-less conversion between MARC (MARC21 but also

other formats like UNIMARC) and XML (github.com/marc4j/marc4j, 2018).

JTopas is “Java tokenizer and parser tools. The JTopas project provides a small,
easy-to-use Java library for the common problem of parsing arbitrary text data. These data
can come from a simple configuration file with a few comments, a HTML, XML or RTF
stream, source code of various programming languages etc. Sometimes a text has to be

parsed completely, sometimes only parts of it are important” (openhub.net/p/jtopas, 2018).

PureMVC is “a lightweight framework for creating applications based upon the
classic Model-View-Controller design meta-pattern. This is a Java port of the AS3
reference implementation of the MultiCore Version. It supports modular programming
through the use of Multiton Core actors instead of the Singletons used in the Standard

Version” (puremvc.org, 2016).

JPacman is “like game used for teaching software testing. It exposes students to the
use of git, maven, JUnit, and mockito. Parts of the code are well tested, whereas others are
left untested intentionally. As a student in software testing, you can extend the test suite, or
use the framework to build extensions in a test-driven way. As a teacher, you can use the
framework to create your own testing exercises” (github.com/SERG-Delft/jpacman-

framework, 2018).

27

www.manaraa.com

https://github.com/marc4j/marc4j
https://www.openhub.net/p/jtopas
http://en.wikipedia.org/wiki/Model-view-controller
https://github.com/PureMVC/puremvc-as3-multicore-framework/wiki
https://github.com/PureMVC/puremvc-as3-multicore-framework/wiki
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Multiton
http://en.wikipedia.org/wiki/Singleton_pattern
https://github.com/PureMVC/puremvc-java-standard-framework/wiki
https://github.com/PureMVC/puremvc-java-standard-framework/wiki
http://puremvc.org/

Commons-Lang is the “standard Java libraries fail to provide enough methods for
manipulation of its core classes. The Commons Lang Component provides these extra
methods. The Commons Lang Component provides a host of helper utilities for the java.
Lang API, notably String manipulation methods, basic numerical methods, object
reflection, creation and serialization, and System properties. Additionally it contains an
inheritable enum type, an exception structure that supports multiple types of nested-
Exceptions and a series of utilities dedicated to help with building methods, such as hash
Code, to String and equals. With version of commons-lang 3.x, developers decided to
change API and therefore created differently named artifact and jar files. This is the new
version, while apache-commons-Lang is the compatibility package”

(github.com/apache/commons-lang, 2018).

Apache Commons is “an Apache project focused on all aspects of reusable Java
components. The Apache Commons source code repositories are writable for all ASF
committers. While Apache Commons is a Commit-Then-Review community, we would
consider it polite and helpful for contributors to announce their intentions and plans on the
dev mailing list before committing code. All contributors should read our contributing

guidelines” (commons.apache.org, 2018).

28

www.manaraa.com

http://commons.apache.org/mail-lists.html
http://commons.apache.org/patches.html
http://commons.apache.org/patches.html

3.2.2 Phase Two: Producing OO metrics on the method level with JAVA dataset using
Intellij IDEA tool (Creating Dataset 1)

To predict the software fault, several metrics such as historical and object oriented
metrics used in different researches. The dataset used in researches may be private or
public. Everyone can use the public dataset for a lot of applications. Unlike the private
dataset that not everyone can access and in order to use these datasets, some procedures and
issues should be followed. In this thesis, the datasets is created through collecting JAVA
codes (large and small scales), and then import these codes into Intellij IDEA tool to extract

the desired metrics (features) as shown in table 1 before.

Figure 3 below shows the extracted results from Intellij IDEA tool that contains

methods as rows and each method has 44 metrics (features).

| Home | nset Pagelayout | Formulas | Data Review View loadTest Team @ - = x

calibri - | - General - ﬁ @ E- Q‘ E é‘:ﬂ"l‘fsum' % [ﬁ

Coy
Pt ot et | (B 2 W[A | e cone | T[] oneporm rome | e ke Form || o ot pra|
Clipboard & Font = Humber = Styles Cells Editing
| AlLS -0 £] 15 ¥
A [¢ [o [e [¢ [& [w [o [o [« [v]| m N [o p [a | R [s T [u [vig
-1 Method B BRANCH CALL CALLED CALLEDp CALLEDt CAST CAUGHT CDENS CLOC COM_RAT CONTROL D E ev(G) EXEC EXP IF_NEST IMP iv(G)
2 org.apach 0 0 1 0 0 0 0 o 0 6 0.6667 0 2 39 1 1 5
3 org.apach 0 0 3 1 0 1 0 o 0 6 0.5455 0 4 282 1 2 23
4 org.apach 0 0 1 0 0 0 0 o 0 6 0.6667 0 2 39 1 1 5
5 org.apach 0 0 3 1 0 1 0 o 0 6 0.5455 0 4 282 1 2 23
6 org.apach 0 0 1 1 1 0 0 o 0 3 0.5 0 1 4 1 1 3
| org.apach 0 0 3 0 0 0 0 o 0 9 0.6429 0 2 75 1 3 9
8 org.apach 0 0 4 11 5 [0 o 0.2 16 0.64 1 6 445 1 a 15
92 org.apach 0 0 1 0 0 0 0 o 0 13 0.7222 0 2 91 1 3 10
10 org.apach 0 0 3 1 1 0 0 o 0 11 0.6875 0 2 67 1 3 9
| org.apach 0 0 1 0 0 0 0 o 0 12 0.75 0 2 87 1 1 6
12 org.apach 0 0 1 1 1 0 0 o 0 6 0.5455 0 1 33 1 3 10
13 org.apach 0 0 3 2 2 0 0 1 0.2857 8 0.4 2 11 1278 1 5 29
3 org.apach 0 0 o 0 0 0 0 o 0 7 0.7 0 2 a3 1 1 5
5 org.apach 0 0 2 0 0 0 0 o 0.2 5 0.3846 1 6 279 2 a4 9
15 org.apach 0 0 2 6 6 0 0 o 0 4 0.5714 0 0 0 1 1 7
17 org.apach 0 0 2 3 3 0 0 o 0 9 0.75 0 3 0 1 1 13
18 org.apach 0 0 2 2 2 0 0 o 0.3333 7 0.5385 1 5 126 2 2 8
19 org.apach 0 0 4 2 2 0 0 1 0.25 9 0.5 1 7 646 1 3 15
20 org.apach 0 1 27 2 2 0 0 o 0.3929 10 0.1852 11 18 8813 7 17 113
21 org.apach [[5 5 0 [0 . 1 13
22 org.apach [[3 3 0 [0 1 25
23 org.apach [[5 5 o [0 1 2
24 org.apach [[3 o [0 1 [
25 org.apach [[3 [0 1 20
"

[
e ®)

Figure 3: Intellij IDEA tool results (metrics)

29

—

www.manharaa.com

3.2.3 Phase Three: Producing faulty & non-faulty methods using manual error
seeding (Creating Dataset 2)

The class label as shown in figure 6 was created by using the manual error seeding
as shown in figure 2 and 3 below. Through changing in the source code of the methods, that
will cause faults. Then the method in the dataset will be faulty. And the rest will be not
faulty. After adding faults in the source code of the method, prediction of real faults on the

base of seeded faults is done.

| pukblic MultipleChoicelnputRequest (5tring prompt, Collection<String> choices) {

super (prompt)
H if (choices =— null) {
throw new IllegalArgumentException("choices must not be null™)

3

thi=s.choices = new LinkedHashSet<>(choices) ;

Figure 4: Method before error seeding
= public MultipleChoiceInputRequest (String prompt, Collection<String> choices) {
super (prompt) ;
H if (choices I= nmll) {

}
this.choices = new LinkedHashSet«<>(choices);

Figure 5: Method after error seeding

30

www.manharaa.com

Insert Formulas Data Load Test Team

@-mx

dh Home

Page Layout

= Ko

B

Calibri 7 E 7

Einap Text

| B R

2 Copy Fill+
a‘slr - Format Painter PRI 9 A | Mrlgr&[enler : g;’,‘,:’tl;::\':l. afl-’[;m. Styles ~ et Pelcte Fm'mal 2 Clear » :::{:ﬁ SF:I‘:d&‘
Clipboard ir] Font il Number LF] Cells Editing
ARL M (‘ .fr‘ class label
A | P | & v | [m | s | o | & | & [av [o [& [] m
1 |Method B CALL COM_RAT D EXEC WG oc N n NCLOC (CP_CRCTOCP_MAIFOCP_RLBT STAT ~ TCOM_RA'Y v6) classla
2] org.apach 0 1 6 1 2 39 1 5 1 9 i 7 3 2 5 24 1 1 2 19 1 TRUE
3 org.apach 0 3 6 1 4 282 2 23 1 1 18 14 5 3 10 60 26 2 1 68 1 TRUE
4 org.apach 0 1 6 1 2 39 1 5 1 9 i 7 3 2 5 24 1 1 2 19 1 TRUE
5 org.apach 0 3 6 1 4 282 2 23 1 1 18 14 5 3 10 60 26 2 1 68 1 TRUE
6] org.apach 0 1 3 1 1 4 1 3 1 [} 3 3 3 0 4 12 7 1 1 4 1 TRUE
i orgapach 0 3 9 1 2 75 3 9 1 14 10 8 5 3 7 35 16 3 2 30 1 TRUE
8| orgapach 0 4 16 1 6 445 4 15 2 5 19 15 9 4 15 67 32 5 2 74 7 TRUE
9] org.apach 0 1 13 1 2 g1 3 10 1 18 11 10 5 2 7 38 17 3 3 36 1 TRUE
10| org.apach 0 3 11 1 2 67 3 9 1 16 9 8 5 2 7 32 15 3 2 26 1 TRUE
A org.apach 0 1 12 1 2 87 1 6 1 16 11 9 4 3 5 36 15 1 3 34 1 TRUE
1) orgapach 0 1 6 1 1 33 3 10 1 1 8 7 5 1 6 29 14 3 1 22 1 TRUE
13 orgapach 0 3 3 0 1 1278 5 9 3 20 7 19 12 0 2 94 44 7 1 114 4 TRUE
14 org.apach 0 0 7 1 2 49 1 5 1 10 i 7 3 0 5 24 1 1 2 19 1 TRUE
15 org.apach 0 2 5 0 6 79 4 9 1 13 13 12 8 0 15 49 26 5 1 46 1 TRUE
16| org.apach 0 2 4 1 0 0 1 7 1 7 4 4 3 0 3 15 8 1 1 8 1 TRUE
17 orgapach 0 2 9 1 3 50 1 13 1 12 10 8 3 1 8 35 17 1 3 30 2 TRUE
18| orgapach 0 2 7 1 5 126 2 8 1 13 9 7 6 1 12 35 20 3 1 15 7 TRUE
19| org.apach 0 4 9 1 i 646 3 15 2 18 21 16 9 1 15 72 33 4 1 84 3 TRUE
20 org.apach 0 7 10 0 18 8813 17 113 8 54 88 40 44 1 66 316 153 28 0 468 11 TRUE
2| org.apach 0 2 El 1 3 50 1 13 1 12 10 8 3 1 8 35 1 1 3 30 2 TRUE
22| orgapach 0 8 0 0 1 17 1 25 1 4 5 5 4 2 4 18 9 1 0 1 1 TRUE
23 orgapach 0 1 6 1 0 a 1 2 1 9 4 4 3 1 3 15 8 1 2 8 1 TRUE
24 org.apach 0 0 6 1 0 0 0 0 1 8 3 3 2 1 2 11 6 0 3 4 1 TRUE
25 org.apach 0 4 4 0 10 685 4 20 3 14 18 14 10 0 22 67 35 3 0 68 3 TRUE
26| org.apach 0 1 1 0 0 0 1 2 1 4 3 3 3 0 3 12 7 1 0 4 1 TRUE
ﬂurg.apach 0 10 13 0 9 1498 6 36 1 28 35 22 15 3 17 113 44 6 1 156 1 TRUE
28 orgapach 0 6 12 0 16 3159 7 38 2 28 44 2 16 2 34 151 68 10 1 196 4 TRUE
=1 [EEE™Ne====0]

Figure 6: Class label

3.2.4 Phase Four: Applying OO metrics and machine learning techniques on Java
Dataset

In this step, the object oriented metrics (B, CALL, CLOC, COM_RAT, D, E, EXEC,
EXP, IV(G), LOC, N, n, NCLOC, NP, STAT, TCOM_RAT, , STAT, QCP_CRCT, QCP_MAINT,
QCP_RLBTY,V,V(G)) are extracted from the java codes after the error seeding to get new

values of features as shown in figure 7 below.

31

www.manharaa.com

| Home { Insert Page Layout Formulas Data Review View Load Test Team @ -8 X

::E“t Calii BT == =% | Siwepren General - Iﬁ @ E- Q‘ @ é::v“sm' ﬁr iﬁ
PEe | Format e || [[| lherge s o - Condonel Fume g || T et Fomet | e S P

Clipboard fa Font [Alignment il Number I Styles Cells Editing
\ ARS - £ | TRUE

A | ¢ [e [v [m [o p [R | s | v | x | an [s [a0 | & | & | a | a | an [a0 | #o | aa | M
1 Method B CAL ClOC COMRATD £ BXEC BP w6 O N n NCLOC NP QCP_CRCTOCP_MAINOCP_RIBTSTAT TCOM_RA'V WG) class lal=
"2 |orgapach o 1 5 1 2 39 1 5 1 g 7 7 5 2 5 % 11 1 2 19 1 TRUE
"3 orgapach o 5 5 1 T 2 2 1 11 18 N 5 3 10 60 % 2 1 & 2 TRUE
4 |orgapach 0 1 5 1 2 39 1 5 1 g 7 7 3 2 5 2 1 1 2 19 1 TRUE
5 |orgapach 0 3 5 1 4 w2 2 23 1 1 18 I 5 3 10 50 2% 2 1 68 o[Cmue
6 orgapach 0 1 3 1 1 4 1 3 1 5 3 3 3 0 4 12 7 1 1 4 1 TRUE
7 orgapach 0 3 [} 1 2 7 3 9 1 14 10 8 5 3 7 35 16 3 2 30 1 TRUE
8 orgapach o 4 16 1 6 425 4 15 2 25 19 15) 4 15 67 5 5 2 7 2 TRUE
"9 |orgapach o 1 13 1 2 51 3 10 1 18 11 10 5 2 7 38 17 3 3 36 1 TRUE
10 orgapach o 5 11 1 2 & 3 9 1 16] 8 5 2 7 32 15 3 2 % 1 TRUE
11 orgapach 0 1 1 1 2) 1 6 1 16 u 9 4 3 5 3 15 1 3 3 1 TRUE
12 |orgapach 0 1 5 1 1 33 3 10 1 1 8 7 5 1 6 29 14 3 1 2 1 TRUE
13 orgapach 0 3 8 0 1 127 5 29 3 20 27 19 P 0 2 84 n 7 1 1 4 TRUE
14 orgapach 0 0 7 1 2 T 1 5 1 10 7 7 3 0 5 I 11 1 2 19 1 TRUE
15 orgapach o 2 5 [} 6 279 4] 1 13 13 1 8 [} 15 9 2 5 1 I 2 TRUE
16 orgapach o 2 4 1 o 0 1 7 1 7 4 4 5 0 3 15 8 1 1 8 1 TRUE
17 jorgapach o 2 g 1 3 %0 1 13 1 1 10 8 5 1 8 35 17 1 3 30 2 TRUE
18| orgapach [} 2 7 1 5 16 2 8 1 13] 7 5 1 n 35 20 3 1 25 2 TRUE
19 |orgapach 0 4 g 1 7 8% 3 15 2 18 n 16 9 1 15 2 33 4 1 8 3 TRUE
20 orgapach 0 27 10 0 18 8813 17 13 8 54 88 % n 1 65 516 153 8 0 s 11 TRUE
21 orgapach 0 2 [} 1 3 %0 1 13 1 1 10 8 3 1 8 35 17 1 3 30 2 TRUE
22 orgapach 0 8 0 0 1 17 1 2 1 4 5 5 4 2 4 18 3 1 0 1 1 TRUE
23 orgapach o 1 5 1 o 0 1 2 1 g 4 4 5 1 3 15 8 1 2 8 1 TRUE
24 orgapach o o 5 1 o 0 0 o 1 8 3 3 2 1 2 1 6 [3 4 1 TRUE
25 orgapach [} 4 4 [} 10 685 4 20 3 14 18 1 10 [} P! 67 35 6 0 68 3 TRUE
26 | orgapach 0 1 1 [} 0 0 1 2 1 4 3 3 3 [} 3 12 7 1 0 4 1 TRUE
27 orgapach 0 10 13 0 s 1498 6 36 1 28 35 P 15 3 7 3 m 6 1 1% 1 TRUE
28 |orgapach 0 5 1 0 16 3259 7 38 2 28 m n 16 2 38 151 68 10 1 19 4 TRUE
Lo | EEIE T e ===

Figure 7: metrics after error seeding

Then machine learning techniques are applied (Decision Table, J48, SVM, Naive
Bays and Random forest) on the dataset to build the predictive model on method level

using python.

3.2.5 Phase Five: Comparing between OO metrics and historical metrics

In order to produce a better performance in predicting software fault proneness on
the method level, the object oriented metrics that shown in table 1 before and historical
metrics that shown in table 2 below, are being compared and decided which is the best set
of metrics that improve the software quality and reduce the cost and time in determining the

methods that contain faults.

32

www.manharaa.com

Table 2: Historical Metrics Description (Hata, et al, 2012)

. Churned LOC / Total LOC, and Deleted
1 Code-Related Metrics LOC / Total LOC
9 Process-Related Changes, fixes, past bugs, Process
Metrics complexity metrics
3 Organizational Number of developers, Structure of
Metrics organization, Network metrics
4 Geographical Metrics locations

3.2.6 Phase Six: Comparing between machine learning techniques that used on the
method level

As an enhancement step in the software quality, several machine learning
techniques Decision Table, SVM, Naive Bays, J48 and Random forest are compared to
determine which is the best machine learning techniques using the object oriented metrics

on method level.

3.2.6.1 Naive Bays Algorithm:

The Naive Bayes classifier, presently experiencing a renaissance in machine
learning, has long been a core technique in info retrieval. Number of the variations of Naive
Bayes models used for text retrieval and classification, specializing in the spacing

assumptions created concerning word occurrences in documents (Lewis, D. D, 1998).

Naive Bays is commonly used as a baseline in text classification as a result of its
quick and straight forward to implement. Its serve assumptions create such potency

potential, however additionally adversely has an effect on the standard of its results. With
33

www.manaraa.com

Naive Bays classifiers lead to a fast algorithmic program that’s competitive with state of

the-art text classification algorithms such as the Support Vector Machine.

The Naive Bayes model could be a heavily simplified Bayesian likelihood model.
The Naive Bayes classifier operates ona powerful independence assumption; this
implies that the likelihood of 1lattribute doesn't have an effect on the likelihood of the
opposite. Given a series of attributes, the naive Bayes classifier ~makes
2n! Freelance assumptions. However, the results of the naive Bayes classifier are often

correct.

3.2.6.2 J48 Algorithm:

J48 is an expansion of ID3. The further features of J48 are show cause for missing
values, attribute value ranges, decision trees pruning and derivation of rules. J48 is an open
source Java implementation algorithm; it generates based on particular identity of data and
it is objective is gradually generalized of a decision tree till it gains balance of accuracy and

flexibility (Kaur, G., et al. 2014)

J48 algorithm creates a decision tree based on the set of training instances. It depend
on agreedy-top-down approach to the build the decision tree; it starts with building a root
node, where the attribute is considered as the best classifies all the training instances is the
same process is reiterated for the rest of the attributes recursively till all the instances have
been classified. In order to select the best instances, the data gained from each instances is

calculated and the highest gained data is selected (Saravanan, N., et al. 2018).

34

www.manaraa.com

All decision trees are most powerful technique in data processing implementation
A decision tree offersseveral benefits todata processing; it provides a
straightforward understanding for the implementation It also proceed with flawed datasets
or missing valuesand providesan improved prediction.J48 is capable of
handling each Nominal and numeric data (Onik, A. et al. 2015).

J48 scans for a surveillance list in an incremental technique. It finds one run at any
moment. Each time it finds a decision it adds it to finish the rundown standards, unhand the
cases secured by that administer from the preparation in order to find another lead for the
rest of the preparation cases. Classification of dengue dataset using J48 algorithm and ant

colony based AJ48 algorithm (Saravanan, N. et al, 2017).

J48 based on the concept of information entropy and inspect the difference in
entropy; this variation in entropy is called as normalized information. Attribute with highest
normalized information is used to make decisions. J48 works very well with both discrete
attributes and continuous attributes, also it gives an option for refining trees after creation

(Bhargava, N. et al, 2017)

3.2.6.3 Decision Table Algorithm:

The decision Table classifier (DTC) isone in all the doable approaches
to multistage decision making. The main idea of any multistage approach is to split up a
complex decision into unique several decisions, to get a final best solution obtained

(Safavian, S. et al, 1991).

35

www.manaraa.com

The ability of Decision tables is evaluated as a hypothesis for supervised learning
algorithms. Decision tables are one amongthe only hypothesis areas attainable, and
frequently they are straightforward to know. Decision tables show that on artificial and
real-world domains containing solely separate options, and a lot of datasets employed
in machine learning either don't need these options, or that these options have few values

(Kohavi, R. 1995).

The advantages of decision table include robustness based on simultaneous usage of
complementary recognition approaches and easy in dynamic adaptation. Decision tables are
represented as ranking of a given class. They can be integrated by a many methods that
reduce or the class set. These methods are acceptable regardless of the similarity between
the individual classifiers; the effectivity and efficiency of the methods has been shown in
many applications with real-world data. It is predicted that the decision tables are

applicable to many problem domains.

Each decision in the decision table is corresponded to a, relation, variable or
predicate whose probability values are within an alternatives. Each action in the decision
table is a procedure to be performed; one of the uses of decision tables is to detect

conditions under a certain input factor (Ho, T. et al, 1994).

One of the important approaches for decision-making and pattern recognition is a
decision table, which is based on specific attribute selection. Attribute selection is a process
of selecting the best subset of features by evaluating the performance of learning schemes

depending on different attribute subsets.

36

www.manaraa.com

Decision tables are significantly supreme to other models in terms of reliability,
accuracy and response time. Decision tables have not been used in many fields and its

results improved its high performance in classification (Chen, C., et al, 2016).

3.2.6.4 Random Forest Algorithm:

Random Forest (RF) could be a powerful machine learning classifier
that’s comparatively unknown in land remote sensing and has not been
evaluated completely by the remote sensing community compared to a lot of typical pattern
recognition techniques. Key benefits of RF include: their non-parametric nature; high
classification accuracy; and capability to see variable importance. However, the split rules
for classification are unknown, thus RF is thought ofto be recording machine
kind classifier. RF provides Associate in Nursing algorithmic rule for estimating missing
values; and suppleness to perform many sorts of information analysis, as well as regression,
classification, survival analysis, and unsupervised learning (Rodriguez-Galiano, V. et al,

2012).

Random Forests (RF), does not need reduction of the
predictor before classification. To boot, RF vyield variable importance measures for
every candidate predictor. The effectiveness of RF variable is its importance measures
in characteristic verity predictor among an oversized range of candidate predictors (Archer,
K. et al, 2008). A Random Forest (RF) classifier is an associate ensemble classifier that
produces multiple decision trees, employing a willy-nilly elite set of coaching samples and

variables. This classifier has become in style inside the remote sensing community because

37

www.manaraa.com

of the accuracy of its classifications. RF classifier handles high knowledge spatiality and
multi co linearity, being quick and insensitive to over fitting. It is, however, sensitive to the
sampling style. RF classifier has been extensively exploited in numerous situations, as an
example to cut back the amount of dimensions of hyper spectral knowledge (Belgiu, M et

al, 2016).

The random forest (RF)formulaby Leo Breiman has becomea
customary information analysis tool in bioinformatics. It has shown glorious performance
in settings wherever the quantity of variablesis far larger thanthe quantity of
observations, RF development on applications of bioinformatics and machine biology.
Special attention is paid to sensible aspects like the choice of parameters, offered RF
implementations, and vital pitfalls and biases of RF and its variable importance measures

(Boulesteix, A. et al, 2012).

3.2.6.5 SVM Algorithm:

Support vector machine is one in all the foremost powerful learning algorithms
andis employed fora good range of real-world applications. The potency of
SVM formulaand its performance principally depends on the kernelkind and its
parameters. Moreover, the feature set choice that's accustomed train the SVM model is
another necessary issue that encompasses a major influence on the classification accuracy.
The feature set choice could be animportant step in machine learning, especially for
managing high dimensional dataset. Most of the previous
researches handled these necessary factors individually (Aljarah, I., et al, 2018).

38

www.manaraa.com

Support vector machine (SVM)is thoughtasa robust methodology
for resolution issues in nonlinear classification, perform estimation and density estimation.
SVM has been introduced at intervals the context of applied mathematics learning theory
and structural risk minimization. Least squares support vector machine (LS-SVM) is
reformulations from normal SVM that cause resolution linear Karush-Kuhn-Tucker (KKT)
systems. LS-SVM IS closely associated with regularization networks
and Gaussian processes to emphasize and exploits primal-dual interpretations (Mustafa, M.

et al, 2012).

SVM is a theoretical machine learning classification technique that was adopted for
structural risk minimization, authors show an empirical analysis that use SVM on the
dataset with sound performance assessments. Therefore, authors have a tendency to utilize
SVM for the benchmark classification rule to notice the accuracy rate of the feature
subsets.SVM was 1st conferred at the Fifth Annual ACM Workshop
on Computation Learning Theory (COLT). SVM preprocessing data patterns at a usually a
lot of higher level than the initial feature subset. With associate acceptable non-linear

mapping to the high-dimensional subset (Zhang, Y., et al, 2018).

Support Vector Machines is one of the techniques that are used for pattern
classification and it is widely used in many application areas, kernel parameters is a major
factor that impacts accuracy classification. The objective of this research is to optimize the

best parameters and feature subset without degrading the SVM (Huang, C. et al, 2016).

39

www.manaraa.com

3.3Datasets

The datasets that used in this thesis is JAVA Open Source Projects as shown in
table 3, (Malhotra and Jain, 2012, Hata, et al, 2012, Koru and Liu, 2005). The dataset
consists of fourteen java projects; three of them were large scale and the remaining eleven
were small scale. The overall extracted features were 44 features, but the number of
features after processing was 21 features as shown in table 1. We exclude the features that

make no difference on the results and have low variation that shown in table 6.

Table 3: Details of Datasets

Ant 14133 44 21 Large
Cassandra 15319 44 21 Large
Wicket 10310 44 21 Large
Apa 309 44 21 Small
apache-log4 4480 44 21 Large
cinema 326 44 21 Small
commons-codec 1321 44 21 Large
common-lang 5511 44 21 Large
iyad-marc4j 504 44 21 Small
jpacman 218 44 21 Small
jtopasl 433 44 21 Small
jtopas2 498 44 21 Small
puremvc 212 44 21 Small
realstate 483 44 21 Small

All projects of dataset are written in Java and have relatively object oriented
properties and faults. The projects were chosen because they span varied application
domains. Also, the open source projects are available for everyone in case of discovering

anything that needs to change.

40

www.manaraa.com

The datasets was normalized through rescaling attributes to the range -2 to 2 as
shown in figure 4 (Singhal, S., & Jena, M. 2013). And preprocessed to gain better results by
excluding the features in table 4 that have no effect on the dataset or have low variation as

shown in figure 5 on the base of information gain.

Home | Inset Pagelsyout Fomulss Dats Review View loadTest Team @ -7 x

Siwrap Text Geners! - =\.§Eﬂ ﬂ @ %- Q‘ E é::l'?s”"" ﬂ [ﬁ

ﬁ gacd Calibri vl -
23 Coy

‘ racte B ‘ B IO v\|&v A- 5 Merge & Center ~ : fci’.'.‘““a't'.'?n';ai = SI;:I:I:v st Dakt Fomst | st :::T:n&‘
Clipboard] Font] Alignment [} Humber [} Styles Cells Editing

ANS -0 Ji | -Lo22081 [

A [¢ T e T v [m] o] p [rR [s [v x | a [ae [a [ac [an] ao | ar [as [a1 | JAn
1 Method B CALL CLOC COM_RATD E EXEC EXP ivg] lOC N n NCLOC NP STAT TCOM_RAV w6) 'dass label '
2 'org.apach -2 -198B76 -L84615 -175 -L96B75 -19%971 -15785 -198208 -L96S52 -L91262 -197422 -LS95 -197619 -L63636 -L9g4AS -LB1SI18 -L9gES -L9697 TRUE
3 'org.apach -2 -196629 -L84615 -175 -19375 -199787 -195699 -191756 -L96552 -1.8932 -19337 -L89189 -195238 -145455 -196899 -1.90909 -L95885 -193939 TRUE
4 'org.apach 2 198876 184615 175 -196875 -19%971 -19785 198208 -L9655) 191262 -197422 -L94S95 197619 -163636 -19%45 181818 19835 19697 TRUE
5 'org.apach 2 196629 184615 175 -19375 -199787 -195699 191756 -L96552 -1.8932 19337 -L891s9 195238 145455 196895 190909 195885 193939 TRUE
6 org.apach 2 198876 192308 175 -198438 -19%937 19785 198925 -L96532 194175 -198%35 137683 -197619 2 19845 -190309 199758 L9637 TRUE
7 'org.apach 2 196629 176923 175 -196875 199943 -1.93543 196774 -L96552 -186408 -196317 -1.93822 195238 -145455 195343 -181818 -198185 -1.9697 TRUE
'8 'org.apach -2 95506 -LSBS7A 175 -L90625 -199663 -L91398 L9464 -L93103 L7726 193002 -LEBALT 190476 127273 152243] -18IS1 -195522 -193939 TRUE
5 'org.apach -2 198876 -166667 -175 -196875 -199931 -1.93548 -196416 -L96552 -182524 -195948 -192278 -195238 -163636 195343 -172727 -197822 -19697 TRUE
10 'org.apach -2 196629 -L71795 -175 -L96B75 -199M9 -L93548 -L96774 -L96S52 -LBAd66 -196685 -L93822 -195238 -L63636 -L9539 -LBISI8 -L98427 -L9697 TRUE
11 'org.apach -2 -198876 -169231 -175 -196875 -199934 -19785 -19785 -L96552 -LBA66 -195948 -19305 -196429 -145455 -L9g45 -172727 -197%43 -L9697 TRUE
12 org.apach 2 198876 184615 175 198438 -199975 193543 196416 -L9655) -1.8932 -197052 -L94S95 195238 181818 195349 190909 198669 -19697 TRUE
13 org.apach 2 196629 179487 2 182813 -19%033 -1.89247 189605 L8955 -180583 -1900S5 -1.85328 -186905 2 189147 -190909 193101 187879 TRUE
14 org.apach 2 2 182051 175 -196875 199963 15785 198208 -196552 -L30291 197422 -194595 137619 2 19845 -LB1E18 19885 19637 TRUE
15 org.apach 2 197753 L8718 2 190625 199783 191398 196774 196552 -L87379 -195212 -130734 -191667 2 192248 -1.90309 -197216 193933 TRUE
15 org.apach -2 197753 -1897M -175 2 -2 19785 -197491 -196552 -193204 -198527 -196911 -197619 2 -19845 -190309 -199516 L9637 TRUE
17 org.apach -2 197753 -176923 -175 -195313 -1.99932 -19785 -195341 -L96552 -1.8835 -196317 -193822 -197619 -181818 -19845 -172727 -198185 -193939 TRUE
18 org.apach -2 197753 -182051 -175 -L92188 -199905 -L95699 -L97133 -L96S52 -LE7379 -196685 -L94595 -194048 -L81818 -195349 -190909 -L98487 -193939 TRUE
19 org.apach -2 -195506 -176923 -175 -189063 -199511 -L93548 -1.94624 -L93103 -LB2524 -192265 -LB7645 -1.90476 -1B1818 -L93798 -1.90909 -194917 -1.90909 TRUE
20 org.apach -2 -169663 -174359 2 171875 19233 -L63441 159498 -L72414 147573 -16758% -L69112 14881 -L8181% 156583 2 171679 -L66667 TRUE
21 org.apach 2 197753 176923 175 195313 199932 19785 195341 -L9655) -1.8835 196317 -193820 197619 -181818 19845 172727 -L98185 193939 TRUE
22 'org.apach -2 -191011 2 2 198438 199987 19785 191039 -L96532 196117 -198158 -L96133 196429 163636 -13845 2 19933 19637 TRUE
23 org.apach 2 198875 184615 -175 2 2 19785 199283 -1.96552 -191262 -198527 196911 197619 -1.81818 -19845 -LB1818 -199516 -19697 TRUE
24 org.apach -2 2 18615 -175 2 -2 2 -2 196552 -192233 -1.98895 -197683 -L9831 -1.1818 -2 -L72727 -199758 -19697 TRUE
25 org.apach -2 195506 -1.89744 -2 184375 -199%482 -1.91398 192832 -1.89655 -186408 -19337 -1.89189 -189286 -2 -1.90698 -2 -195885 -190909 TRUE
i

Ready | ‘

Figure 4: Normalized Dataset

41

www.manharaa.com

_"ﬁg\\“_tﬂ ! L “ “ apache-ant2 - Mlcmsoft&:m ‘ ﬁ = e |

Home | Inert | Pagelayaut | Formulas Dats Review View loadTest Team @ -7 x
B ii:;y Calibri -l - |kl [vm -| SiwrapText General - 15 i}g’a‘ ':;dl jﬂj j‘\ _E_J %:Itis“m' %7 jia
P romatpainer | (B 2 L[S0 G-AC[E = Elfmerge s Center = | |18 = o ol S st | e e T | G gear e Seete
Clipboard = Font 5 Alignment 5 Number = styles cels Editing

\ aT2 - £ | TRUE 3

A C £ L M 0 P R 5 v % AB 48 AD AE AN A0 AR as AT ALi
1 Method B CALL CLOC COM _RATD £ EXEC EXP wE Lc N n NCLOC NP STAT TCOM_RAV v(G) classlabel
2 orgapach 0 1 5 1 2 19 1 5 1 3 7 7 3 2 1 2 19 1| TRUE
3 orgapach 0 3 & 1 2 282 2 3 1 1 18 14 5 3 2 1 68 2 TRUE
4 org.apach 0 1 & 1 2 39 1 5 1 9 7 7 3 2 1 2 19 1 TRUE
5 org.apach 0 3 & 1 4 282 2 3 1 1 18 14 5 3 2 1 68 2 TRUE
6 orgapach 0 1 3 1 1 4 1 3 1 5 3 3 3 0 1 1 4 1 TRUE
7 orgapach 0 3] 1 2 75 3 9 1 1 10 3 H 3 3 2 30 1 TRUE
8 orgapach 0 4 16 1 6 445 4 15 2] 19 15 9 4 5 2 7 2 TRUE
9 org.apach 0 1 13 1 2 91 3 10 1 18 1 10 5 2 3 3 36 1 TRUE
10 org.apach 0 3 11 1 2 67 3 9 1 16 9 8 5 2 3 2 6 1 TRUE
11 org.apach 0 1 ¥ 1 2 37 1 6 1 16 u 9 4 3 1 3 N 1 TRUE
12 org.apach 0 1 5 1 1 33 3 10 1 1 3 7 5 1 3 1 2 1 TRUE
13 org.apach 0 3 g 0 1 e 5 3 3 20 7 19 12 0 7 1 114 4 TRUE
14 org.apach 0 0 7 1 2 9 1 5 1 10 7 7 3 0 1 2 19 1 TRUE
15 org.apach 0 2 5 0 6 279 4 9 1 13 13 12 8] 5 1 45 2 TRUE
16 org.apach 0 2 4 1 0 0 1 7 1 7 4 4 3] 1 1 8 1 TRUE
17 org.apach 0 2] 1 3 %0 1 13 1 12 10 3 3 1 1 3 30 2 TRUE
18 org.apach 0 2 7 1 5 126 2 3 1 13 9 7 6 1 3 1 5 2 TRUE
19 org.apach 0 4 3 1 7 546 3 15 2 18 1 16 9 1 4 1 8 3 TRUE
20 org.apach 0 27 10 0 18 8813 17 113 8 54 88 a0 a 1 3 0 68 11 TRUE
21 otg.apach 0 2 9 1 3 %0 1 13 1 12 10 8 3 1 1 3 30 2 TRUE
22 org.apach 0 8] 0 1 17 1 5 1 4 5 5 4 2 1 0 1 1 TRUE
23 org.apach 0 1 5 1 0 0 1 2 1] 4 4 3 1 1 2 g 1 TRUE
24 org.apach 0 0 5 1 0 0 0 0 1 g 3 3 2 1 0 3 a 1 TRUE
25 org.apach 0 4 4 0 10 585 4 0 3 1 18 14 10 0 6 0 68 3 TRUE
4 4« » M| apache-ant2 %1 [m

Ready

BTN e =0 (*)

Figure 5: Processed Dataset

Table 4: Not used Object Oriented metrics (jetbrains.com/idea, 2018)

1 IF_NEST

Calculates the maximum depth of nesting of conditional (if) statements in
each method.

2 CDENS

Calculates the ratio of control statements to all statements for each method.

3 ev(G)

Calculates the essential complexity of each non-abstract method. Essential
complexity is a graph-theoretic measure of just how ill-structured a method's
control flow is. Essential complexity ranges from 1 to v(G), the cyclomatic
complexity of the method.

JLOC

Calculates the number of lines of javadoc comments in each method.
Whitespace is not counted for purposes of this metric.

5 | LooP NEST | Calculates the maximum depth of nesting of loop statements in each method.

For, while, and do-while loops are counted.

6 NEST

Calculates the maximum nesting depth of each method.

7 TODO

Calculates the number of TODO comments in each method. The format of
TODO comments is defined in the Settings | Editor | TODO configuration
panel.

8 ASSERT

Calculates the total number of assert statements in each method.

9 BRANCH

Calculates the total number of non-structured branch statements in each
method. Non-structured branch statements include continue statements and
branch statements outside of switch statements.

42

www.manaraa.com

Calculates the total number of control statements in each method. Control

10 | CONTROL statements include if, for, while, do, try, break, continue, switch, and
synchronized statements.
11| CAUGHT . . .
Calculates the number of exception classes which are caught in each method.
12 | THROWS Calculates the number of exception classes each method declares in its
"throws" clause.
13 IMP . .
Calculates the number of concrete implementation of each abstract method.
14 LOOP Calculates the total number of loop statements in each method. For, while,
and do-while loops are counted.
15 NULL Calculates the number of comparisons with null in each method.
16 OVER Calculates the number of times each non-abstract method is overridden.
Calculates the total number of return points for each method. This includes
17| RETURN any return statements as well as the implicit return at the end of constructors
and methods returning void.
Calculates the number places in the project at which each method may be
18 CALLED called. This includes both calls to the method directly and calls to any method
which it overrides.
Calculates the number places in the product code of the project at which each
19| CALLEDp method may be called. This includes both calls to the method directly and
calls to any method which it overrides.
Calculates the number places in the test code of the project at which each
20 | CALLEDt method may be called. This includes both calls to the method directly and
calls to any method which it overrides.
Calculates the number of typecast or instance of expressions in each non-
21 CAST abstract method. Excessive use of typecasting may be a sign of an ill-
structured program.
22 NTP Calculates the total number of type parameters of each method.
Calculates ratio of lines of code for a method to the lines of code for it's
23 RLOC

containing class. Methods which have high relative lines of code values may
indicate poor abstraction.

43

www.manaraa.com

3.4Research Tools and Applications
In this thesis, the following tools used:

Intellij ldea Tool: “is a special programming environment or integrated
development environment (IDE) largely meant for Java. This environment is used
especially for the development of programs. It is developed by JetBrains, which was
formally called IntelliJ. It is available in two editions: the Community Edition which is
licensed by Apache 2.0, and a commercial edition known as the Ultimate Edition. Both of
them can be used for creating software which can be sold. What makes IntelliJ IDEA so
different from its counterparts is its ease of use, flexibility and its solid design.”

(jetbrains.com/idea, 2018).

WEKA Tool: “WEKA is a workbench for machine learning that is designed to
assist machine learning techniques to a diversity of real-world problems; it provides a
working environment for the domain specialist, and it provides wealth interactive tools for
data manipulation, result visualization, database linkage, and classification techniques.”

(Holmes., et al., 1994).

Python: “is developed under an OSI-approved open source license, making it freely
usable and distributable, even for commercial use. Python's license is administered by the

Python Software Foundation” (python.org/about, 2018)

44

www.manaraa.com

https://www.python.org/psf

Chapter Four

4. Experiment Setup

In order to evaluate the proposed methodology, dataset on method level is created
by using Intellij IDEA tool which extracts 44 features through importing java projects; we
decided to use 21 features of them as shown in table 1 after preprocessing the data using
WEKA 2017 and excluding the recent 23 feature as shown in table 4 before. After that

class label is determined by using error seeding manually.

Using python, datasets were normalized and machine learning algorithms are
applied on them for software fault proneness prediction. To evaluate the results, evaluation

measures are used in python.

4.1 Evaluation Measures

Six evaluation measures are used in this thesis, which are in the following table.

Table 5: Evaluation Measures

Evaluation
Measure equation
Accuracy TP+TN/(TN+FP+FN+TP)
Error Rate FP+FN/(TN+FP+FN+TP)
Precision TP/(TP+FP)
Recall TP/(TP+FN)
F-measure 2 (precision * recall)/(precision+recall)
Specificity TN/(TN+FP)

TP: true positive TN: true negative FP: false positive FN: false negative
45

www.manaraa.com

True Positive is the correctly predicted positive result, while the False Positive is the
incorrectly predicted positive result. (Sathyaraj and Prabu, 2015). True Negative is the correctly
predicted negative result, while the False Negative is the incorrectly predicted negative result
(Malhotra, R., 2015). The evaluation measures used to evaluate the results gained from

applying machine learning algorithms.

4.2 Experiment 1: Extracting Metrics

Intellij IDEA tool is used to extract the features from java projects. Metrics reloaded
plug-in is installed within the tool to get metrics values (features), then java projects are
imported into the tool through import project tab. To get metrics values, from analyze tab,
calculate metrics is chosen. After that metrics profiles are named and determined to be on

method level. And finally, the results are exported to CSV file.

4.3 Experiment 2: Error Seeding and Mutation

Mutation testing is one of the white box testing which is very fascinating to
researcher due to its approach to improve quality of software. In this testing technique the
software is tested to check the completeness of test suite which in turns ensures the quality
of software. In Mutation testing simple bugs are introduced in the program to check the
adequacy of the test suite. If test suite fails to identify the seeded faults then effective test
cases are added to it to make it sufficiently strong. The objective of mutation testing is to

find the flaws of test suite and then modifying suite to ensure its reliability in finding errors.
46

www.manaraa.com

Mutation testing is based on two assumptions: the competent programmer
hypothesis and the coupling effect. The competent programmer hypothesis supposes that
although program is written by skilled programmer but it may not be error free. It may
contain very small error that may deviate program output of program from the intended
one. The coupling effect is based on fact that detection of small errors may cause the
identification of big faults. That is simple errors in a program may be associated with

complex error (Khan, T., 2015).

Mutants are the key components of the mutation testing. A mutant is version of
original program under test in which simple bug is added intuitively. Each mutant contains
one simple error. The success of mutation testing depends on the number of mutants
generated. On the basis of concept of mutant generation, Mutants can be of different types:
Syntactical mutants: Mutants that are generated by making change in syntax of the
program. There mutants can be detected by the compiler. For example: x=zy++. Minor
mutants: Mutants that can be detected by any test case of the test suit. Equivalent mutant:
These mutants are not detected by any test case because, these are not actually errors. These
mutants produce the same output as that of original program. Value mutant: these mutants
are generated by changing the value of constants and variable across the boundary values
that is by replacing values to either too large or too small numbers. Condition Mutants:
These mutants are generated to check the efficiency of test cases related to decision control
statements accuracy. This can be done by replacing arithmetic, relational or logical
operators in conditions. Statement mutants: In these mutants the statements are removed,

replaced or duplicated to check the efficiency of test cases. From the point of testing the

47

www.manaraa.com

value mutants, condition mutants and statement mutants are more useful as they help to

find the inefficiency of test cases

Mutation testing involves generation of mutants, testing and analyzing the

outcomes. The whole process can be implemented by following the given steps:

Step 1. Generation of mutants: For the program under test various mutants are
generated. These mutants may be generated by introducing errors by replacing any

operator, operand or statement of the program.

Step 2: Testing: In second step the original program as well as the generated mutant

is tested against all test cases of test suite.

Step 3: Comparison of test outcome: Now the outcome of mutant program is tested
with that of original program. If outcome is different, then mutant is killed that is it is not
further tested with rest of the cases of test suite. It interprets that test suite is robust enough

to handle the particular fault added in the killed mutant.

Step 4: Updating of test suite: In the previous step if the outcomes of mutant and
original programs is same for all the test cases of test suite it may further have two
interpretations. One the mutant is equivalent mutant of the original program. An equivalent
mutant is a version of original program that has different syntax but same semantic as that
of original program. Two, the test suite is not adequate to handle that particular fault so
more effective test case is added to test suite so that one particular fault can be identified by
testing. These steps are repeated for all mutants and for each mutant for all test cases in test

suite. But this testing should be stopped if specified reliability of test suit has been achieved

48

www.manaraa.com

or if pursuing further in testing is resulting in much testing cost as compared to benefit from

it (Khan, T., 2015).

4.4 Experiment 3: implementation

The libraries of machine learning algorithms are installed in MATLAB framework
and python. The datasets are inserted into MATLAB and python, and five machine
learning algorithms are applied on them to get the results. Each machine learning
algorithm is repeated 100 times and 10 fold cross validation is used for training and testing
datasets. Machine learning algorithms are applied on the dataset before preprocessing and

after preprocessing.

The following tables show the result of applying the algorithms on the large scale
dataset (processed and unprocessed):

Table 6: Naive Bays Algorithm on Large Scale Processed Dataset

Ant 90.035 | 9.965 | 0.992 | 0.906 | 0.947 | 9.900 | 4.800 | 0.327
Cassandra | 92.752 | 7.248 | 0.991 | 0.935 | 0.962 | 26.620 | 5.580 | 0.173 | naive bays
Wicket | 92.849 | 7.151 | 0.991 | 0.936 | 0.963 | 15.130 | 4.170 | 0.216

Table 7: Naive Bays Algorithm on Large Scale Unprocessed Dataset

Ant 88.607 | 11.393 | 0.994 | 0.891 | 0.939 | 8.150 | 6.550 | 0.446
Cassandra | 88.788 | 11.212 | 0.992 | 0.894 | 0.940 | 20.760 | 11.440 | 0.355 | naive bays
Wicket | 91.227 | 8.773 | 0.992 | 0.919 | 0.954 | 13.650 | 5.650 | 0.293

49

www.manharaa.com

Table 8: J48 Algorithm on Large Scale Processed Dataset

Ant 98.958 | 1.042 | 0.990 | 1.000 | 0.995 | 14.700 | 0.000 | 0.000
Cassandra 95.853 | 4.147 | 0.990 | 0.968 | 0.979 | 0.913 | 0.087 | 0.087 | J48
Wicket 98.953 | 1.047 | 0.990 | 1.000 | 0.995 | 19.300 | 0.000 | 0.000

Table 9: J48 Algorithm on Large Scale Unprocessed Dataset

Ant 98.944 | 1.056 | 0.990 | 1.000 | 0.995 | 14.690 | 0.010 | 0.001
Cassandra | 98.948 | 1.052 | 0.990 | 1.000 | 0.995 | 32.120 | 0.080 | 0.002 J48
Wicket 98.951 | 1.049 | 0.990 | 1.000 | 0.995 | 19.060 | 0.240 | 0.012

Table 10: Decision Table Algorithm on Large Scale Processed Dataset

Ant 98.960 | 1.040 | 0.990 | 1.000 | 0.995 | 14.700 | 0.000 | 0.000

Cassandra | 97.899 | 2.101 | 0.979 | 1.000 | 0.989 | 32.000 | 0.000 | 0.000 | Decision Table
Wicket | 98.953 | 1.047 | 0.990 | 1.000 | 0.995 | 19.300 | 0.000 | 0.000

50

www.manharaa.com

Table 11: Decision Table Algorithm on Large Scale Unprocessed Dataset

Ant 98.960 | 1.040 | 0.990 | 1.000 | 0.995 | 14.700 | 0.000 | 0.000
Cassandra | 97.910 | 2.090 | 0.979 | 1.000 | 0.989 | 31.450 | 0.550 | 0.017 | Decision Table
Wicket | 98.886 | 1.114 | 0.989 | 1.000 | 0.994 | 11.500 | 0.000 | 0.000

Table 12: Random Forest Algorithm on Large Scale Processed Dataset

Ant 99.013 | 0.987 | 0.991 | 1.000 | 0.995 | 13.300 | 1.400 | 0.095
Cassandra | 97.943 | 2.057 | 0.980 | 0.999 | 0.990 | 29.860 | 2.140 | 0.067 | Random Forest
Wicket | 98.924 | 1.076 | 0.990 | 0.999 | 0.995 | 10.520 | 0.980 | 0.085

Table 13: Random Forest Algorithm on Large Scale Unprocessed Dataset

Ant 98.990 | 1.010 | 0.990 | 1.000 | 0.995 | 13.650 | 1.050 | 0.071
Cassandra | 98.040 | 1.960 | 0.981 | 0.999 | 0.990 | 28.740 | 3.260 | 0.102 | Random Forest
Wicket | 98.942 | 1.058 | 0.990 | 1.000 | 0.995 | 10.550 | 0.950 | 0.083

Table 14: SVM Algorithm on Large Scale Processed Dataset

Ant 98.957 | 1.043 | 0.990 | 1.000 | 0.995 | 14.700 | 0.000 | 0.000
Cassandra | 97.911 | 2.089 | 0.979 | 1.000 | 0.989 | 32.000 | 0.000 | 0.000 | SVM
Wicket 98.884 | 1.116 | 0.989 | 1.000 | 0.994 | 11.500 | 0.000 | 0.000

51

www.manharaa.com

Table 15: SVM Algorithm on Large Scale Unprocessed Dataset

Ant 98.960 | 1.040 | 0.990 | 1.000 | 0.995 | 14.700 | 0.000 | 0.000

Cassandra | 97.911 | 2.089 | 0.979 | 1.000 | 0.989 | 32.000 | 0.000 | 0.000 SVM
Wicket 98.886 | 1.114 | 0.989 | 1.000 | 0.994 | 11.500 | 0.000 | 0.000

The following tables show the result of applying the algorithms on the small scale
dataset (processed and unprocessed):

Table 16: Naive Bays Algorithm on small Scale Processed Dataset

Apa 86.528 | 13.472 | 0.997 | 0.867 | 0.925 | 0.100 | 0.030 | 0.231

apache-logd | 92.758 | 7.242 | 0.990 | 0.936 | 0.962 | 4.230 | 0.470 | 0.100
cinema 42536 | 57.464 | 0.983 | 0.428 | 0.585 | 0.300 | 0.100 | 0.250
commons-codec | 93.015 | 6.985 | 0.987 | 0.940 | 0.960 | 1.410 | 0.290 | 0.171
common-lang | 23.194 | 76.806 | 0.991 | 0.226 | 0.368 | 1.120 | 4.580 | 0.804
iyad-marc4j | 29.061 | 70.939 | 0.995 | 0.286 | 0.429 | 0.100 | 0.400 | 0.800 | Naive Bays
jpacman | 90.024 | 9.976 | 0.991 | 0.909 | 0.946 | 0.200 | 0.000 | 0.000
jtopasl 63.401 | 36.599 | 0.997 | 0.633 | 0.765 | 0.110 | 0.390 | 0.780
jtopas2 81.028 | 18.972 | 0.992 | 0.815 | 0.894 | 0.320 | 0.180 | 0.360
puremvc | 91.171 | 8.829 | 0.995 | 0.916 | 0.952 | 0.100 | 0.200 | 0.667
realstate | 66.652 | 33.348 | 0.991 | 0.667 | 0.789 | 0.210 | 0.290 | 0.580

52

www.manharaa.com

Table 17: Naive Bays Algorithm on small Scale Unprocessed Dataset

Apa 88.318 | 11.682 | 0.994 | 0.888 | 0.936 | 0.180 | 0.220 | 0.550

apache-logd | 87.437 | 12.563 | 0.990 | 0.882 | 0.924 | 3.920 | 0.780 | 0.166
cinema 59.077 | 40.923 | 0.988 | 0.595 | 0.735 | 0.270 | 0.130 | 0.325
commons-codec | 91.439 | 8.561 | 0.988 | 0.924 | 0.952 | 1.350 | 0.350 | 0.206
common-lang | 25.658 | 74.342 | 0.994 | 0.250 | 0.400 | 0.850 | 4.850 | 0.851
iyad-marc4j | 35.576 | 64.424 | 0.990 | 0.354 | 0.513 | 0.200 | 0.300 | 0.600 | Naive Bays
jpacman | 93.439 | 6.561 | 0.991 | 0.943 | 0.965 | 0.200 | 0.000 | 0.000
jtopasl 86.429 | 13.571 | 0.998 | 0.865 | 0.926 | 0.100 | 0.400 | 0.800
jtopas2 87.220 | 12.780 | 0.994 | 0.876 | 0.931 | 0.270 | 0.230 | 0.460
puremvc | 88.554 | 11.446 | 0.995 | 0.889 | 0.937 | 0.100 | 0.200 | 0.667
realstate | 85.303 | 14.697 | 0.995 | 0.856 | 0.919 | 0.200 | 0.300 | 0.600

Table 18: J48 Algorithm on small Scale Processed Dataset

Apa 98.710 | 1.290 | 0.987 | 1.000 | 0.993 | 0.400 | 0.000 | 0.000
apache-log4 98.939 | 1.061 | 0.989 | 1.000 | 0.995 | 4.700 | 0.000 | 0.000
cinema 98.788 | 1.212 | 0.988 | 1.000 | 0.994 | 0.400 | 0.000 | 0.000

commons-codec | 98.712 | 1.288 | 0.987 | 1.000 | 0.994 | 1.700 | 0.000 | 0.000
common-lang 98.966 | 1.034 | 0.990 | 1.000 | 0.995 | 5.700 | 0.000 | 0.000
iyad-marc4j 99.012 | 0.988 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000 | J48

jpacman 99.091 | 0.909 | 0.991 | 1.000 | 0.995 | 0.200 | 0.000 | 0.000
jtopasl 98.848 | 1.152 | 0.988 | 1.000 | 0.994 | 0.500 | 0.000 | 0.000
jtopas2 99.000 | 1.000 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000
puremvc 98.593 | 1.407 | 0.986 | 1.000 | 0.993 | 0.300 | 0.000 | 0.000
realstate 98.971 | 1.029 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000

53

www.manharaa.com

Table 19: J48 Algorithm on small Scale Unprocessed Dataset

Apa 98.710 | 1.290 | 0.987 | 1.000 | 0.993 | 0.400 | 0.000 | 0.000
apache-log4 98.939 | 1.061 | 0.989 | 1.000 | 0.995 | 4.700 | 0.000 | 0.000
cinema 98.788 | 1.212 | 0.988 | 1.000 | 0.994 | 0.400 | 0.000 | 0.000

commons-codec | 98.712 | 1.288 | 0.987 | 1.000 | 0.994 | 1.700 | 0.000 | 0.000
common-lang 98.966 | 1.034 | 0.990 | 1.000 | 0.995 | 5.700 | 0.000 | 0.000
iyad-marc4j 99.012 | 0.988 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000 | J48

jpacman 99.091 | 0.909 | 0.991 | 1.000 | 0.995 | 0.200 | 0.000 | 0.000
jtopasl 98.848 | 1.152 | 0.988 | 1.000 | 0.994 | 0.500 | 0.000 | 0.000
jtopas2 99.000 | 1.000 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000
puremvc 98.593 | 1.407 | 0.986 | 1.000 | 0.993 | 0.300 | 0.000 | 0.000
realstate 98.825 | 1.175 | 0.990 | 0.999 | 0.994 | 0.500 | 0.000 | 0.000

Table 20: Decision Table Algorithm on small Scale Processed Dataset

Apa 98.710 | 1.290 | 0.987 | 1.000 | 0.993 | 0.400 | 0.000 | 0.000

apache-log4d | 98.939 | 1.061 | 0.989 | 1.000 | 0.995 | 4.700 | 0.000 | 0.000
cinema 98.788 | 1.212 | 0.988 | 1.000 | 0.994 | 0.400 | 0.000 | 0.000
commons-codec | 98.712 | 1.288 | 0.987 | 1.000 | 0.994 | 1.700 | 0.000 | 0.000
common-lang | 98.966 | 1.034 | 0.990 | 1.000 | 0.995 | 5.700 | 0.000 | 0.000
iyad-marc4j 99.012 | 0.988 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000 | Decision Table
jpacman 99.091 | 0.909 | 0.991 | 1.000 | 0.995 | 0.200 | 0.000 | 0.000
jtopasl 98.848 | 1.152 | 0.988 | 1.000 | 0.994 | 0.500 | 0.000 | 0.000
jtopas2 99.000 | 1.000 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000
puremvc 98.593 | 1.407 | 0.986 | 1.000 | 0.993 | 0.300 | 0.000 | 0.000
realstate 98.971 | 1.029 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000

54

www.manharaa.com

Table 21: Decision Table Algorithm on small Scale Unprocessed Dataset

Apa 98.710 | 1.290 | 0.987 | 1.000 | 0.993 | 0.400 | 0.000 | 0.000

apache-logd | 98.939 | 1.061 | 0.989 | 1.000 | 0.995 | 4.700 | 0.000 | 0.000
cinema 98.788 | 1.212 | 0.988 | 1.000 | 0.994 | 0.400 | 0.000 | 0.000
commons-codec | 98.712 | 1.288 | 0.987 | 1.000 | 0.994 | 1.700 | 0.000 | 0.000
common-lang | 98.966 | 1.034 | 0.990 | 1.000 | 0.995 | 5.700 | 0.000 | 0.000
iyad-marc4j 99.012 | 0.988 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000 | Decision Table
jpacman 99.091 | 0.909 | 0.991 | 1.000 | 0.995 | 0.200 | 0.000 | 0.000
jtopasl 98.848 | 1.152 | 0.988 | 1.000 | 0.994 | 0.500 | 0.000 | 0.000
jtopas2 99.000 | 1.000 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000
puremvc 98.593 | 1.407 | 0.986 | 1.000 | 0.993 | 0.300 | 0.000 | 0.000
realstate 98.971 | 1.029 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000

Table 22: Random Forest Algorithm on small Scale Processed Dataset

Apa 98.710 | 1.290 | 0.987 | 1.000 | 0.993 | 0.400 | 0.000 | 0.000

apache-log4 | 98.939 | 1.061 | 0.989 | 1.000 | 0.995 | 4.700 | 0.000 | 0.000
cinema 98.788 | 1.212 | 0.988 | 1.000 | 0.994 | 0.400 | 0.000 | 0.000
commons-codec | 98.712 | 1.288 | 0.987 | 1.000 | 0.994 | 1.700 | 0.000 | 0.000
common-lang | 98.966 | 1.034 | 0.990 | 1.000 | 0.995 | 5.700 | 0.000 | 0.000
iyad-marc4j 99.012 | 0.988 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000 | Random Forest
jpacman 99.091 | 0.909 | 0.991 | 1.000 | 0.995 | 0.200 | 0.000 | 0.000
jtopasl 98.848 | 1.152 | 0.988 | 1.000 | 0.994 | 0.500 | 0.000 | 0.000
jtopas2 99.000 | 1.000 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000
puremvc 98.545 | 1.455 | 0.986 | 1.000 | 0.993 | 0.300 | 0.000 | 0.000
realstate 98.971 | 1.029 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000

55

www.manharaa.com

Table 23: Random Forest Algorithm on small Scale Unprocessed Dataset

Apa 98.710 | 1.290 | 0.987 | 1.000 | 0.993 | 0.400 | 0.000 | 0.000

apache-log4d | 98.804 | 1.196 | 0.990 | 0.998 | 0.994 | 4.460 | 0.240 | 0.051
Cinema 98.788 | 1.212 | 0.988 | 1.000 | 0.994 | 0.400 | 0.000 | 0.000
commons-codec | 98.712 | 1.288 | 0.987 | 1.000 | 0.994 | 1.700 | 0.000 | 0.000
common-lang | 98.786 | 1.214 | 0.990 | 0.998 | 0.994 | 5.690 | 0.010 | 0.002
iyad-marc4j 99.012 | 0.988 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000 | Random Forest
Jpacman 99.091 | 0.909 | 0.991 | 1.000 | 0.995 | 0.200 | 0.000 | 0.000
jtopasl 98.709 | 1.291 | 0.988 | 0.999 | 0.993 | 0.500 | 0.000 | 0.000
jtopas2 99.000 | 1.000 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000
Puremvc 98.545 | 1.455 | 0.986 | 1.000 | 0.993 | 0.300 | 0.000 | 0.000
Realstate 98.950 | 1.050 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000

Table 24: SVM Algorithm on small Scale Processed Dataset

Apa 98.710 | 1.290 | 0.987 | 1.000 | 0.993 | 0.400 | 0.000 | 0.000

apache-logd | 98.939 | 1.061 | 0.989 | 1.000 | 0.995 | 4.700 | 0.000 | 0.000
cinema 98.788 | 1.212 | 0.988 | 1.000 | 0.994 | 0.400 | 0.000 | 0.000
commons-codec | 98.712 | 1.288 | 0.987 | 1.000 | 0.994 | 1.700 | 0.000 | 0.000
common-lang | 98.966 | 1.034 | 0.990 | 1.000 | 0.995 | 5.700 | 0.000 | 0.000
iyad-marc4j 99.012 | 0.988 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000 | SVM
jpacman 99.091 | 0.909 | 0.991 | 1.000 | 0.995 | 0.200 | 0.000 | 0.000
jtopasl 98.848 | 1.152 | 0.988 | 1.000 | 0.994 | 0.500 | 0.000 | 0.000
jtopas2 99.000 | 1.000 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000
puremvc 98.593 | 1.407 | 0.986 | 1.000 | 0.993 | 0.300 | 0.000 | 0.000
realstate 98.971 | 1.029 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000

56

www.manharaa.com

Table 25: SVM Algorithm on small Scale Unprocessed Dataset

Apa 98.710 | 1.290 | 0.987 | 1.000 | 0.993 | 0.400 | 0.000 | 0.000

apache-logd | 98.939 | 1.061 | 0.989 | 1.000 | 0.995 | 4.700 | 0.000 | 0.000
cinema 98.788 | 1.212 | 0.988 | 1.000 | 0.994 | 0.400 | 0.000 | 0.000
commons-codec | 98.712 | 1.288 | 0.987 | 1.000 | 0.994 | 1.700 | 0.000 | 0.000
common-lang | 98.966 | 1.034 | 0.990 | 1.000 | 0.995 | 5.700 | 0.000 | 0.000
iyad-marc4j 99.012 | 0.988 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000 | SVM
jpacman 99.091 | 0.909 | 0.991 | 1.000 | 0.995 | 0.200 | 0.000 | 0.000
jtopasl 98.848 | 1.152 | 0.988 | 1.000 | 0.994 | 0.500 | 0.000 | 0.000
jtopas2 99.000 | 1.000 | 0.989 | 0.964 | 0.970 | 0.500 | 0.000 | 0.000
puremvc 98.593 | 1.407 | 0.986 | 1.000 | 0.993 | 0.300 | 0.000 | 0.000
realstate 98.971 | 1.029 | 0.990 | 1.000 | 0.995 | 0.500 | 0.000 | 0.000

57

www.manharaa.com

Chapter Five

5. Results Discussion

A few researches discuss the software fault proneness prediction at method level.
One of these few researches discussed the method level fault prediction, but it used
historical metrics which related to control version (Hata, et al, 2012). The dataset for this
paper is gained through contacting the authors but without details about how it was built
depending on class label. This ambiguous dataset motivate us to find the projects of it and
create new dataset of these projects with different metrics type and discover how the class

label is built.

They used the historical metrics on method level and applied one machine learning
algorithm, this motivate us to use object oriented metrics on method level and apply more

machine learning algorithms.

The result in our developed approach we gained from applying python on the
dataset is compared with (Hata, et al, 2012) depending on error rate. It is obvious that the
result in our developed approach using Random Forest is better than their result as shown

in Table 28. In this thesis another 4 classifiers used to predict faults on the method level.

58

www.manaraa.com

Table 26: Comparison of Error Rate

Ant 1.010 1.600
Cassandra 1.960 6.300 Random Forest
Wicket 1.058 0.800

Based on comparison between processed and unprocessed datasets for the large
scale as shown in the tables before, it is obvious that the processed data is a little bit better

than the unprocessed data for the large scale datasets.

While based on comparison between processed and unprocessed data for the small
scale datasets, it is obvious that there is no effect of preprocessing the dataset to get better

results for all algorithms.

Based on the tables before of the evaluation measures the results show that for the
accuracy and error rate the best algorithm is Random Forest and the descending order for
the algorithms is: Random Forest, Decision Table, J48, SVM and the last one is Naive
Bays. While for the precision the descending order is Naive Bays, Random Forest, J48,
SVM and Decision Table. For the recall the order is Decision Table, SVM, J48, Naive Bays
and Random Forest. The false-positive order is Decision Table, SVM, J48, Random Forest
and Naive Bays. F-measure order is Random Forest, SVM, Decision Table, J48 and Naive
Bays. Finally, the Specificity and True-negative order is Naive Bays, Random Forest, J48,

Decision Table and SVM.

59

www.manaraa.com

Chapter Six

6. Conclusion and Future Work

Software fault proneness prediction on the method level was done using building a
predictive model that use five machine learning algorithms which are Random Forest, J48,
Naive Bays, Decision Table and SVM and selected object oriented metrics mentioned

before.

The result in our developed approach is compared with (Hata, et al, 2012)
depending on error rate. It is obvious that the result in our developed approach using

Random Forest is better than their results.

Based on comparison between processed and unprocessed datasets for the large
scale as, it is obvious that the processed data is a little bit better than the unprocessed data
for the large scale datasets. While based on comparison between processed and
unprocessed data for the small scale datasets as, it is obvious that there is no effect of

preprocessing the dataset to get better results for all algorithms.

The evaluation measures the results show that for the accuracy and Error rate the
best algorithm is Random Forest and the descending order for the algorithms is: Random
Forest, Decision Table, J48, SVM and the last one is Naive Bays. While for the precision
the descending order is Naive Bays, Random Forest, J48, SVM and Decision Table. For the
recall the order is Decision Table, SVM, J48, Naive Bays and Random Forest. The false-

positive order is Decision Table, SVM, J48, Random Forest and Naive Bays. F-measure

60

www.manaraa.com

order is Random Forest, SVM, Decision Table, J48 and Naive Bays. Finally, the Specificity

and True-negative order is Naive Bays, Random Forest, J48, Decision Table and SVM.

In this thesis three out of rate projects are used for the software fault proneness

prediction. As a future work, five other projects will be used.

61

www.manharaa.com

7. References

Akour, M., Alsmadi, I. and Alazzam, I., 2017. Software fault proneness prediction: a
comparative study between bagging, boosting, and stacking ensemble and base learner
methods. International Journal of Data Analysis Techniques and Strategies, 9(1), pp.1-16.

Alenezi, M., Banitaan, S. and Obeidat, Q., 2014. Fault-proneness of open source systems:
An empirical analysis. The International Arab Conference on Information Technology
(ACIT2014) Synapse, 1, p.256.

Aljarah, 1., Ala’M, A. Z., Faris, H., Hassonah, M. A., Mirjalili, S., and Saadeh, H. 2018.
Simultaneous feature selection and support vector machine optimization using the
grasshopper optimization algorithm. Cognitive Computation, pp. 1-18.

Announcing Apache Wicket 8: Write Less, Achieve More. 2018. Retrieved from
http://wicket.apache.org/.

Apache Log4j 2. 2018. Retrieved from https://logging.apache.org/log4j/2.x/.

Apache. 2018. Apache/commons-lang. Retrieved from
https://github.com/apache/commons-lang.

Archer, K. J., and Kimes, R. V. 2008. Empirical characterization of random forest variable
importance measures. Computational Statistics & Data Analysis, 52(4), pp. 2249-2260.

Banitaan, S., Alenezi, M., Nygard, K. and Magel, K., 2013, April. Towards test focus
selection for integration testing using method level software metrics. In Information
Technology: New Generations (ITNG), 2013 Tenth International Conference on (pp. 343-
348). IEEE.

Belgiu, M., and Dragut, L. 2016. Random forest in remote sensing: A review of
applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing,
114, pp. 24-31.

62

www.manaraa.com

http://wicket.apache.org/
https://logging.apache.org/log4j/2.x/
https://github.com/apache/commons-lang

Bhargava, N., Sharma, S., Purohit, R., and Rathore, P. S. 2017, October. Prediction of
recurrence cancer using J48 algorithm. In Communication and Electronics Systems
(ICCES), 2017 2nd International Conference on (pp. 386-390). IEEE.

Boucher, A. and Badri, M., 2016, December. Using Software Metrics Thresholds to Predict
Fault- Classes in Object-Oriented Software. In Applied Computing and Information
Technology/3rd Intl Conf on Computational Science/Intelligence and Applied
Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science & Engineering
(ACIT-CSII-BCD), 2016 4th Intl Conf on (pp. 169-176). IEEE.

Boulesteix, A. L., Janitza, S., Kruppa, J., and Kdnig, I. R. 2012. Overview of random forest
methodology and practical guidance with emphasis on computational biology and
bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
2(6), pp. 493-507.

Catal, C., 2011. Software fault prediction: A literature review and current trends. Expert
systems with applications, 38(4), pp.4626-4636.

Chen, C., Zhang, G., Yang, J., and Milton, J. C. 2016. An explanatory analysis of driver
injury severity in rear-end crashes using a decision table/Naive Bayes (DTNB) hybrid
classifier. Accident Analysis & Prevention, 90, pp. 95-107.

Giger, E., D'’Ambros, M., Pinzger, M. and Gall, H.C., 2012, September. Method-level bug
prediction. In Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement (pp. 171-180). ACM.

Gondra, 1., 2008. Applying machine learning to software fault-proneness prediction.
Journal of Systems and Software, 81(2), pp.186-195.

Gupta, D., October, 2016. Mutation Testing: An Error Seeding Software Testing
Technique. International Journal of Advance Research in Science and Engineering, 5(10).

Gupta, D.L. and Malviya, A.K., 2011. Observations on Fault Proneness Prediction Models
of Object-Oriented System to Improve Software Quality. International Journal of
Advanced Research in Computer Science, 2(2).

63

www.manaraa.com

Hall, C. 2018. The PureMVC Framework Code at the Speed of Thought. Retrieved from
http://puremvc.org/.

Hata, H., Mizuno, O. and Kikuno, T., 2012, June. Bug prediction based on fine-grained
module histories. In Proceedings of the 34th International Conference on Software
Engineering (pp. 200-210). IEEE Press.

Hata, H., Mizuno, O. and Kikuno, T., 2011, September. Historage: fine-grained version
control system for java. In Proceedings of the 12th International Workshop on Principles of
Software Evolution and the 7th annual ERCIM Workshop on Software Evolution (pp. 96-
100). ACM.

Ho, T. K., Hull, J. J., and Srihari, S. N. 1994. Decision combination in multiple classifier
systems. |EEE transactions on pattern analysis and machine intelligence, 16(1), pp. 66-75.

Holmes, G., Donkin, A., and Witten, I. H. 1994. "Weka: A machine learning workbench.
In Intelligent Information Systems". Proceedings of the 1994 Second Australian and New
Zealand Conference on (pp. 357-361). IEEE.

Hong, E., 2012, October. Software Fault-proneness Prediction using Random Forest.
International Journal of Smart Home, 6(4).

Hong, E., 2017. Software Fault-proneness Prediction using Module Severity Metrics.
International Journal of Applied Engineering Research, 12(9), pp.2038-2043.

Hovemeyer, D. and Pugh, W., 2004. Finding bugs is easy. ACM Sigplan Notices, 39(12),
pp.92-106.

Huang, C. L., and Wang, C. J. 2006. A GA-based feature selection and parameters
optimization for support vector machines. Expert Systems with applications, 31(2), pp. 231-
240.

JetBrains.com/idea, 2018. Jet Brains Co. IntelliJ°’IDEA 7.0 retrieved from
http://www.jetbrains.com/idea/

64

www.manaraa.com

http://puremvc.org/

Jureczko, M. and Spinellis, D., 2010. Using object-oriented design metrics to predict
software defects. Models and Methods of System Dependability.
OficynaWydawniczaPolitechnikiWroctawskiej, pp.69-81.

Kaur, G., and Chhabra, A. 2014. Improved J48 classification algorithm for the prediction of
diabetes. International Journal of Computer Applications, 98(22).

Khan, T. A., Muzammal, M., and ljaz, A. 2015, December. On effectiveness of fault-
seeding using interaction patterns. In Frontiers of Information Technology (FIT), 2015 13th
International Conference on (pp. 119-124). IEEE.

Kohavi, R. 1995, April. The power of decision tables. In European conference on machine
learning (pp. 174-189). Springer, Berlin, Heidelberg.

Koru, A.G. and Liu, H., 2005. Building effective defect-prediction models in practice.
IEEE software, 22(6), pp.23-29.

Kumar, L., Rath, S. and Sureka, A., 2017. Using Source Code Metrics and Ensemble
Methods for Fault Proneness Prediction. arXiv preprint arXiv:1704.04383.

Lewis, D. D. 1998, April. Naive Bayes at forty: The independence assumption in
information retrieval. In European conference on machine learning (pp. 4-15). Springer,
Berlin, Heidelberg.

Luo, Y., Ben, K. and Mi, L., 2010. Software metrics reduction for fault-proneness
prediction of software modules. Network and Parallel Computing, pp.432-441.

MacNeill, C., and Bodewig, S. 2018. Welcome. Retrieved from http://ant.apache.org/.

Malhotra, R. and Jain, A., 2012. Fault prediction using statistical and machine learning
methods for improving software quality. Journal of Information Processing Systems, 8(2),
pp.241-262.

65

www.manaraa.com

http://ant.apache.org/

Malhotra, R., 2015. A systematic review of machine learning techniques for software fault
prediction. Applied Soft Computing, 27, pp.504-518.

Malhotra, R., Kaur, A. and Singh, Y., 2010. Empirical validation of object-oriented metrics
for predicting fault proneness at different severity levels using support vector machines.
International Journal of System Assurance Engineering and Management, 1(3), pp.269-
281.

Manage massive amounts of data, fast, without losing sleep. 2018. Retrieved from
http://cassandra.apache.org/.

Marc4j. 2018. Marc4j/marc4j. Retrieved from https://github.com/marc4j/marc4j.

Moukhafi, M., El Yassini, K., and Bri, S. 2018. A novel hybrid GA and SVM with PSO
feature selection for intrusion detection system. IJASRE, 4.’

Mukherjee, S., and Sharma, N. 2012. Intrusion detection using naive Bayes classifier with
feature reduction. Procedia Technology, 4, pp. 119-128.

Mustafa, M. W., Sulaiman, M. H., Khalid, S. A., and Shareef, H. 2012. Hybrid Genetic
Algorithm-Support Vector Machine Technique for Power Tracing in Deregulated Power
Systems. In Real-World Applications of Genetic Algorithms. InTech.

Onik, A. R., Hag, N. F., Alam, L., and Mamun, T. I. 2015. An analytical comparison on
filter feature extraction method in data mining using J48 classifier. International Journal of
Computer Applications, 124(13).

Openhub.net. 2018. JTopas. Retrieved from http://www.openhub.net/p/jtopas.

Python.org, 2018, [online], puthon.org retrieved from https://www.python.org/about/

Rathore, S.S. and Kumar, S., 2017. A decision tree logic based recommendation system to
select software fault prediction techniques. Computing, 99(3), pp.255-285.

66

www.manaraa.com

http://cassandra.apache.org/
https://github.com/marc4j/marc4j
http://www.openhub.net/p/jtopas
https://www.python.org/about/

Rennie, J. D., Shih, L., Teevan, J., and Karger, D. R. 2003. Tackling the poor assumptions
of naive bayes text classifiers. In Proceedings of the 20th international conference on
machine learning (icml-03) (pp. 616-623).

Rish, 1. 2001, August. An empirical study of the naive Bayes classifier. In 1JCAI 2001
workshop on empirical methods in artificial intelligence 3(22), pp. 41-46. New York: IBM.

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J.
P. 2012. An assessment of the effectiveness of a random forest classifier for land-cover
classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, pp. 93-104.

Rutar, N., Almazan, C.B. and Foster, J.S., 2004, November. A comparison of bug finding
tools for Java. In Software Reliability Engineering, 2004. ISSRE 2004. 15th International
Symposium on (pp. 245-256). IEEE.

Safavian, S. R., and Landgrebe, D. 1991. A survey of decision tree classifier methodology.
IEEE transactions on systems, man, and cybernetics, 21(3), pp. 660-674.

Saravanan, N., and Gayathri, V. 2017, November. Classification of dengue dataset using
J48 algorithm and ant colony based AJ48 algorithm. In Inventive Computing and
Informatics (ICICI), International Conference on (pp. 1062-1067). IEEE.

Sathyaraj, R. and Prabu, S., 2015. An approach for software fault prediction to measure the
quality of different prediction methodologies using software metrics. Indian Journal of
Science and Technology, 8(35).

Satyanarayana, N., Ramadevi, Y., and Chari, K. K. 2018, January. High blood pressure
prediction based on AAA using J48 classifier. In Signal Processing And Communication
Engineering Systems (SPACES), 2018 Conference on (pp. 121-126). IEEE.

Scanniello, G., Gravino, C., Marcus, A. and Menzies, T., 2013, November. Class level fault
prediction using software clustering. In Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering (pp. 640-645). IEEE Press.

SERG-Delft. 2018. SERG-Delft/jpacman-framework. Retrieved from
https://github.com/SERG-Delft/jpacman-framework.

67

www.manaraa.com

https://github.com/SERG-Delft/jpacman-framework

Singh, Y., Kaur, A. and Malhotra, R., 2009. Comparative analysis of regression and
machine learning methods for predicting fault proneness models. International journal of
computer applications in technology, 35(2-4), pp.183-193.

Singh, Y., Kaur, A. and Malhotra, R., 2009, July. Software fault proneness prediction using
support vector machines. In Proceedings of the world congress on engineering (Vol. 1, pp.
1-3).

Singhal, S., and Jena, M. 2013. A study on WEKA tool for data preprocessing,
classification and clustering. International Journal of Innovative technology and exploring
engineering (1Jltee), 2(6), pp. 250-253.

Suresh, Y., Kumar, L. and Rath, S.K., 2014. Statistical and machine learning methods for
software fault prediction using CK metric suite: a comparative analysis. ISRN Software
Engineering, 2014.

Team, A. C. 2018. Apache Commons - Apache Commons. Retrieved from
http://commons.apache.org/.

Yu, P., Systa, T. and Muller, H., 2002. Predicting fault-proneness using OO metrics. An
industrial case study. In Software Maintenance and Reengineering, 2002. Proceedings.
Sixth European Conference on (pp. 99-107). IEEE.

Zhang, Y., Song, W., Li, S., Fu, L., and Li, S. 2018. Risk Detection of Stroke using a
Feature Selection and Classification Method. IEEE Access.

68

www.manaraa.com

http://commons.apache.org/

