
www.manaraa.com

Investigation for Software Fault Proneness Prediction

at Method Level

By

Samah Aldiabat

Supervisors

Prof. Dr. Bilal Abul-Huda

Dr. Mohamed Akour

Computer Information Systems

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENT FOR THE

DEGREE OF THE MASTER OF COMPUTER INFORMATION SYSTEMS AT YARMOUK

UNIVERSITY, IRBID, JORDAN.

December, 2018

www.manaraa.com

II

www.manaraa.com

III

Acknowledgment

At the beginning and before any one I would like to thank God for my success and completing

this thesis that otherwise I would not have.

Big thank to my supervisors Dr. Bilal and Dr. Mohammed for the support and follow-up that

gives me the appropriate guidance to complete this thesis.

Great thanks and gratitude to my family who supported me at all times and encouraged me to

reach the top.

Also, many thanks to my friends and especially Hiba for supporting and helping me in the most

difficult times.

www.manaraa.com

IV

Table of Contents

List of Tables ... VI

List of Figures .. VII

 VIII .. الملخص

Abstract .. IX

Chapter One .. 1

1. Introduction: ... 1

1.1 General Overview ... 1

1.2 Background ... 4

 1.3 Problem Statement .. 7

1.3.1 Research Purpose .. 7

1.3.2 Research Motivation ... 10

1.3.3 Research Questions ... 10

1.3.4 Research Significance ... 11

1.3.5 Operational Definitions .. 11

Chapter Two .. 12

2. Literature Review .. 12

2.1 Software fault, bug and defect ... 12

2.2Software Fault Proneness prediction ... 13

2.3Software Fault Prediction using Machine Learning Techniques .. 16

2.4 Software Fault Prediction Using Metrics .. 21

Chapter Three ... 24

3. Research Methodology ... 24

3.1 Overall Research Design .. 24

3.2 Research Phases .. 25

3.2.1 Phase one: Collecting Java codes... 25

3.2.2 Phase Two: Producing OO metrics on the method level with JAVA dataset using Intellij

IDEA tool (Creating Dataset 1) .. 29

3.2.3 Phase Three: Producing faulty & non-faulty methods using manual error seeding

(Creating Dataset 2) ... 30

3.2.4 Phase Four: Applying OO metrics and machine learning techniques on Java Dataset 31

3.2.5 Phase Five: Comparing between OO metrics and historical metrics..................................... 32

www.manaraa.com

V

3.2.6 Phase Six: Comparing between machine learning techniques that used on the method level

 ... 33

3.2.6.1 Naïve Bays Algorithm: .. 33

3.2.6.2 J48 Algorithm: ... 34

3.2.6.3 Decision Table Algorithm: .. 35

3.2.6.4 Random Forest Algorithm: ... 37

3.2.6.5 SVM Algorithm: .. 38

3.3 Datasets .. 40

3.4 Research Tools and Applications ... 44

Chapter Four ... 45

4. Experiment Setup .. 45

4.1 Evaluation Measures .. 45

4.2 Experiment 1: Extracting Metrics .. 46

4.3 Experiment 2: Error Seeding and Mutation ... 46

4.4 Experiment 3: implementation ... 49

Chapter Five .. 58

5. Results Discussion ... 58

Chapter Six .. 60

6. Conclusion and Future Work .. 60

7. References .. 62

www.manaraa.com

VI

List of Tables

TABLE 1: OBJECT ORIENTED METRICS USED (JETBRAINS.COM/IDEA, 2018) ... 8

TABLE 2: HISTORICAL METRICS DESCRIPTION (HATA, ET AL, 2012) ... 33

TABLE 3: DETAILS OF DATASETS ... 40

TABLE 4: NOT USED OBJECT ORIENTED METRICS (JETBRAINS.COM/IDEA, 2018) 42

TABLE 5: EVALUATION MEASURES ... 45

TABLE 8: NAIVE BAYS ALGORITHM ON LARGE SCALE PROCESSED DATASET 49

TABLE 9: NAIVE BAYS ALGORITHM ON LARGE SCALE UNPROCESSED DATASET 49

TABLE 10: J48 ALGORITHM ON LARGE SCALE PROCESSED DATASET .. 50

TABLE 11: J48 ALGORITHM ON LARGE SCALE UNPROCESSED DATASET .. 50

TABLE 12: DECISION TABLE ALGORITHM ON LARGE SCALE PROCESSED DATASET 50

TABLE 13: DECISION TABLE ALGORITHM ON LARGE SCALE UNPROCESSED DATASET 51

TABLE 14: RANDOM FOREST ALGORITHM ON LARGE SCALE PROCESSED DATASET 51

TABLE 15: RANDOM FOREST ALGORITHM ON LARGE SCALE UNPROCESSED DATASET 51

TABLE 16: SVM ALGORITHM ON LARGE SCALE PROCESSED DATASET ... 51

TABLE 17: SVM ALGORITHM ON LARGE SCALE UNPROCESSED DATASET ... 52

TABLE 18: NAIVE BAYS ALGORITHM ON SMALL SCALE PROCESSED DATASET 52

TABLE 19: NAIVE BAYS ALGORITHM ON SMALL SCALE UNPROCESSED DATASET 53

TABLE 20: J48 ALGORITHM ON SMALL SCALE PROCESSED DATASET.. 53

TABLE 21: J48 ALGORITHM ON SMALL SCALE UNPROCESSED DATASET .. 54

TABLE 22: DECISION TABLE ALGORITHM ON SMALL SCALE PROCESSED DATASET 54

TABLE 23: DECISION TABLE ALGORITHM ON SMALL SCALE UNPROCESSED DATASET 55

TABLE 24: RANDOM FOREST ALGORITHM ON SMALL SCALE PROCESSED DATASET 55

TABLE 25: RANDOM FOREST ALGORITHM ON SMALL SCALE UNPROCESSED DATASET 56

TABLE 26: SVM ALGORITHM ON SMALL SCALE PROCESSED DATASET .. 56

TABLE 27: SVM ALGORITHM ON SMALL SCALE UNPROCESSED DATASET ... 57

TABLE 28: COMPARISON OF ERROR RATE ... 59

www.manaraa.com

VII

List of Figures

FIGURE 1: RESEARCH METHODOLOGY .. 24

FIGURE 2: JAVA SOURCE CODE .. 25

FIGURE 3: INTELLIJ IDEA TOOL RESULTS (METRICS) .. 29

FIGURE 4: METHOD BEFORE ERROR SEEDING ... 30

FIGURE 5: METHOD AFTER ERROR SEEDING ... 30

FIGURE 6: CLASS LABEL .. 31

FIGURE 7: METRICS AFTER ERROR SEEDING .. 32

file:///I:/final%20thesis/Investigation%20for%20Software%20Fault%20Proneness%20Prediction%20at%20Method%20Level.docx%23_Toc534583918
file:///I:/final%20thesis/Investigation%20for%20Software%20Fault%20Proneness%20Prediction%20at%20Method%20Level.docx%23_Toc534583919
file:///I:/final%20thesis/Investigation%20for%20Software%20Fault%20Proneness%20Prediction%20at%20Method%20Level.docx%23_Toc534583920

www.manaraa.com

VIII

 الملخص

 ظمن في ستيرماج. التحقق من تنبؤ البرمجيات بالتعرض للخطأ على مستوى الوحدة البرمجية. سماح عبدالعزيز، الذيابات

. دب أبو الهدى، أ.د. بلا: ون.)المشرف2018 جامعةاليرموك، الحاسوبية، المعلومات نظم قسم رسالة، الحاسوبية، المعلومات

 (محمد عكور

 د أخطاءلإظهار احتمال وجوالوحدات البرمجية يركز التنبؤ بأخطاء البرمجيات على فحص واختبار الملفات و

بعد ت الخاطئة.البياناوالسمات الداخلية موجودة أم لا، ذلك يؤدي إلى بناء نموذج للتنبؤ يعتمد على مقاييس الجودة باستخدام

لى كز الجهد عدما يرالتنبؤ بالوحدة البرمجية الخاطئة، يمكن استخدام عملية التصحيح لفحص واختبار الوحدة البرمجية. و عن

ما ال ، مل فعها بشكالوحدات البرمجية التي تحتوي على أخطاء ، ذلك يمكن أن يساعد في الاستفادة من موارد البرامج وإدارت

 سيعزز مرحلة الصيانة لتكون سهلة.

 Naïve في هذه الأطروحة ، يتم استخدام خمسة خوارزميات تعلم الآلة للتنبؤ بالوحدات البرمجية الخاطئة وهي

Bays وRandom Forest, J48, Decision Table , SVM هذه الخوارزميات تم تطبيقها على قواعد بيانات جافا .

والصغيرة(التي تم معالجتها مسبقا للحصول على نتائج أفضل. المقارنات التي تمت بين مجموعات البيانات)المقاييس الكبيرة

ً لخوارزميات التعلم الآلي تشير الى ان هناك اختلاف في النتائج. بعد مقارنة النتيجة في منهجنا غير المعالجة و المعالجة تبعا

ى معدل الخطأ، من الواضح أن النتيجة في نهجنا المتطور كانت أفضل من اعتماداً عل (Hata, et al, 2012) المطور مع

 Random Forest. نتائجهم باستخدام

كانت ،يرة الحجمنات كبلمجموعة البيا استناداً إلى المقارنة بين مجموعات البيانات التي سبق معالجتها وغير المعالجة

عالجة ة وغير الملمعالجامعالجة. و بالاستناد إلى المقارنة بين البيانات البيانات المعالجة أفضل قليلاً من البيانات غير ال

تائج حصول على ننات لللمجموعات البيانات صغيرة الحجم ، فمن الواضح أنه لا يوجد أي تأثير للمعالجة المسبقة لمجموعة البيا

 .أفضل

والترتيب Random Forest خطأ هيلدقة ومعدل الل بناء على نتائج مقاييس التقييم توضح أن أفضل خوارزمية

 Naïve Bays. و الأخير هو,Random Forest , Decision Table J48 , SVM التنازلي للخوارزميات هو

www.manaraa.com

IX

Abstract

Aldiabat, Samah Abedalaziz. Investigation for Software Fault Proneness Prediction at Method

Level. Master of Computer Information Systems, Thesis, Department of Computer Information

Systems, Yarmouk University, 2018. (Supervisors: Prof. Dr. Bilal A. Abul-Huda, Dr. Mohammed

A. Akour)

Software fault prediction is focusing on examining and testing files, packaging, classes or

methods to show the probability of existing faults or not. That led to build a predictive model

based on quality metrics by using internal attributes and faulty data. After predicting the faulty

method, the correction process can be used to inspect and test the method. When effort focuses

on the methods that have faults, it can help in utilizing and managing the software resources

effectively and that will enhance the maintenance phase to be easy.

In this thesis, five machine learning algorithms are used which are, Naïve Bays, Random

Forest, J48, Decision Table and SVM to predict the faulty methods. These algorithms applied on

Java Datasets (Large and Small scales) contains object oriented metrics (B, CALL, CLOC,

COM_RAT, D, E, EXEC, EXP, IV(G), LOC, N, n, NCLOC, NP, STAT, QCP_CRCT, QCP_MAINT,

QCP_RLBTY, TCOM_RAT, V,V(G)), that normalized and preprocessed to gain better results.

Comparisons done between preprocessed and unprocessed datasets depending on the machine

learning algorithms and there was a variation in the results. The result in our developed approach

is compared with (Hata, et al, 2012) depending on error rate. It is obvious that the result in our

developed approach using Random Forest is better than their results.

Based on comparison between preprocessed and unprocessed datasets for the large scale

as, it is obvious that the processed data is a little bit better than the unprocessed data for the

large scale datasets. While based on comparison between processed and unprocessed data for

www.manaraa.com

X

the small scale datasets as, it is obvious that there is no effect of preprocessing the dataset to get

better results.

The evaluation measures results show that for the accuracy and error rate the best

algorithm is Random Forest and the descending order for the algorithms is: Random Forest,

Decision Table, J48, SVM and the last one is Naïve Bays. While for the precision the descending

order is Naïve Bays, Random Forest, J48, SVM and Decision Table. For the recall the order is

Decision Table, SVM, J48, Naïve Bays and Random Forest. The false-positive order is Decision

Table, SVM, J48, Random Forest and Naïve Bays. F-measure order is Random Forest, SVM,

Decision Table, J48 and Naïve Bays. Finally, the specificity and True-negative order is Naïve

Bays, Random Forest, J48, Decision Table and SVM.

Keywords: Fault prediction, Fault Proneness, machine learning, Object Oriented Metric

www.manaraa.com

1

Chapter One

1. Introduction:

1.1 General Overview

Software systems significant role in the applications that have critical mission,

demands working in a reliable way with their requirements. A comprehensive assessment

for these software systems using manual testing or automatic techniques is needed for

assuring the software quality. To verify the areas that have problems in the system under

the development, predicting the modules that are fault prone by software quality models is

needed to help the experts. Therefore, by enforcing the software quality models at early

stages of the software development life cycle might help in producing reliable software by

efficiently removing faults.

Software testing is the procedure of executing the program with the purpose of

detecting errors and making sure the software does what it supposes to do. Typically,

programs include large number of errors. One of the reasons for continuing these errors

over the software development life cycle is the restrictions of the testing resources, such as

the time and cost. To produce software system with high reliability, high quality and low

cost, the resources should be used in an effective way through concentrating the effort of

testing on the system parts that contains more errors (Banitaan, et al, 2013).

Software quality can be measured according to different attributes; one of these

attributes is the fault proneness. Fault proneness is defined as “the probability of fault

detection in a class”. This means that fault proneness is the probability to be fault prone.

www.manaraa.com

2

The importance of measuring the software fault proneness can be clear in minimize the cost

and improve the overall testing process effectiveness. Fault proneness of the software

cannot be measured directly, It can be estimated by using the software metrics to provide

descriptions of the attributes of the program, and that descriptions are quantitative.

(Malhotra and Jain, 2012).

By taking into account software size and complexity, producing software with high

quality without faults is a complex task and big challenge to achieve. The most costly and

challenging phase in the system development life cycle is the maintenance phase. To deal

with this challenge, we must identify which parts of source code that perhaps include faults

and need to be changed. Software fault prediction is focusing on examining and testing

files, packaging, classes or methods to show the probability of existing faults or not. The

solution is to build a predictive model based on quality metrics by using internal attributes

and faulty data that collected previously, the most repeatedly dependent variable is the fault

proneness. After predicting the faulty class, the correction processcan be used to inspect

and test the class. When effort focuses on the classes that have faults, it can help in utilizing

and managing the software resources effectively and that will enhance the maintenance

phase to be easier than before (Alenezi, et al, 2014).

There are different approaches for prediction in the area of software engineering

like, correction cost prediction, test effort prediction, reusability prediction, fault prediction,

quality prediction, security prediction and effort prediction. But most of these approaches

need more research to reach the model that is robust. The most common research area in

the prediction approach is the software fault prediction (Catal, 2011).

www.manaraa.com

3

Producing a system with high robustness, reliability, efficiency and with no errors is

critical. So fault prediction techniques must use in an efficient and accurate way.The

purpose of the software fault prediction is categorizing the modules that under the test into

error free or error prone modules. This categorization of the modules is a major step in the

early phases of the software development life cycle especially in the testing phase, as

exhaustive testing is impossible and costly. Machine learning techniques are used widely

for building predictive models (Akour, et al, 2017).

Accurate prediction model of the faulty software depends on the availability of the

software metrics information; also it depends on the quality metrics. So the main part of the

process of model building is selecting the subset of software metrics and that will save the

time in collecting and managing them. And select the appropriate classifier that known as

the fault predictors from the machine learning techniques (Alenezi, et al, 2014).

Most researches investigate the fault prediction field, especially on the class level

and used metrics and machine learning techniques to build the predictive model. There is a

noticeable lack of research that are interests in the fault prediction on the method level and

these researches not using all the techniques that used in the class level. We assume that

addressing the fault proneness at the method level might be providing more promises. Since

the method level is better than the class level, because of its effectiveness in the quality

assurance. File level prediction is more efficient than package level prediction. So, method

level prediction is more efficient than file level and package level prediction, and that

means finding more bugs through the activities of quality assurance in the method level

prediction when same amount of lines of code investigated is possible (Hata, et al, 2012).

We will investigate if the fault proneness prediction on the method level will be efficient

www.manaraa.com

4

according to the importance of the fine grained level and its effectiveness in discovering

more faults because of the more details in the method level rather than the class level.

The remainder of this thesis is organized as follows; background, problem statement. The

literature review was in chapter two. Chapter three presents our methodology, while the

experiments discussed in chapter four. In chapter five the results discussion was presented

and finally the conclusion and future work were in chapter six.

1.2 Background

Software dependency and complexity cause in increasing the need to deliver

maintainable software, with high quality and low cost. Therefore, software fault prediction

is considered as an important activity for improving the quality of software and reducing

the effort of maintenance before deploying the system. To build a predictive model,

metrics, predictors, faulty data is needed. Software fault prediction can categorize the

module or the class to be either ‘not fault-prone’, or ‘fault-prone’. Techniques of machine

learning can be used in software fault proneness prediction (Malhotra, 2015, Rathore and

Kumar, 2017).

There are different approaches for prediction in software engineering like,

correction cost prediction, test effort prediction, reusability prediction, fault prediction,

quality prediction, security prediction and effort prediction. But most of these approaches

need more research to reach the model that is robust. The fault data in the module

expressed by 1, else 0 when the error is notified through the test of the system or the field.

The software metrics are utilized as the independent variables and the fault data is utilized

as the dependent data in modeling prediction.

www.manaraa.com

5

Thus, the need of version control system like Subversion for storing the source

code, a change management system like Bugzilla for recording the faults and the tool that

collecting the product metrics from the version control system. One of the techniques for

software fault prediction is applying X-means method for clustering modules and

identifying the top number of cluster. After that, checking the mean vector of every cluster

against vector of metrics thresholds is necessary. So if the mean vector has one metric at

least higher than the threshold value of the same metric, the cluster is predicted as “fault

prone”. Another clustering methods used are the K-means and fuzzy. Experiments show

that by using the X-means clustering, the software fault prediction that is not acting under

supervision can produce efficient results and be completely automated. By using the

algorithms of supervised classification, the model of prediction is built with the prior labels

of fault and prior software metrics in machine learning (Catal, 2011).

One of the machine learning techniques is called ensemble learning which is

combines more than one algorithm of machine learning and trained them for producing

output better than the output of anyone of them separately. There are two types of ensemble

machine learning techniques, heterogeneous and homogenous ensembles. For the

heterogeneous ensemble, it develops each type of the base learner in different way by using

several techniques of Machine learning. By merging each prediction of the base learner

together, the dataset and the prediction are created. While for the homogeneous ensemble, it

uses different subsets of the whole training dataset for each base learner. To produce

satisfied conditions and to reach the suitable ensemble, there are two vital and primary

conditions; which are the accuracy and diversity (Akour, et al, 2017).

www.manaraa.com

6

The most repeatedly dependent variable is the fault proneness. When predict the

fault proneness classes, it can focus on the chance of verification and validation in finding

the faults. After predicting the faulty class, the actions of correction can be used to inspect

and test the class. When the effort focuses on the classes that have faults, it can help in

utilizing and managing the software resources effectively and that will enhance the

maintenance phase to be easier than before (Alenezi, et al, 2014).

For estimating the fault proneness, model predicted using the QMOOD (Quality

Model Object Oriented Design) and OOCK (Object Oriented Chidamber and Kemerer)

metrics by applying six methods of machine learning and one method statistic. Different

attributes can measure the software quality like, testing effort, fault proneness and testing

effort. Machine learning is used in several domains such as, bioinformatics, retail

companies, and financial institutions. The methods of machine learning used for predicting

the accuracy of the predicted model (genetic programming, multilayer perceptron, support

vector machine, adaboost, bagging and random forest).Apache POI dataset was used for the

applications that extract text like, content management systems, web spiders and index

builders. The techniques of machine learning used for predicting the accuracy of models

when used more than one metric together. Decision trees have been used to predict the fault

proneness, while the artificial neural networks used in predicting value of fault proneness

continuous measure. As for the support vector machine, it is used to perform class

classification to non-fault prone and fault prone. The other techniques of machine learning

used for predicting the classes with faults like, boosting, random forest and bagging. These

techniques can be used in WEKA tool (Malhotra, and Jain, 2012).

www.manaraa.com

7

1.3 Problem Statement

1.3.1 Research Purpose

To the best of our knowledge, the work presented in this thesis trying to be a new

contribution in the field of method level addressing for prediction purposes. This thesis

tried to predict the fault proneness on the method level using object oriented metrics (B,

CALL, CLOC, COM_RAT, D, E, EXEC, EXP, IV(G), LOC, N, n, NCLOC, NP, STAT,

TCOM_RAT, QCP_CRCT, QCP_MAINT, QCP_RLBTY, V,V(G)), shown in table 1

below, as features applied on JAVA datasets and using several machine learning techniques

to build the predictive model such as Decision Table, SVM, Naïve Bays, J48 and Random

Forest.

These metrics were chosen on the base of the experiment and information gain

using WEKA tool which is a good measure for deciding the relevance attributes with

maximal information and most effective features and removes the unrelated features that

haven’t any effect; after running the 44 extracted metrics from Intellij IDEA tool on WEKA

tool and see how the variation and the results were, we decided to choose the 18 metrics

that have an effective results.

 Also, this thesis tried to compare between these techniques to determine the best

technique for software fault proneness prediction on the method level. As another aim,

planning to compare between the performance of the historical metrics and the object

oriented metrics that applied on different datasets (JAVA Open Source Projects) to

conclude the most appropriate metrics for the software fault proneness prediction on the

www.manaraa.com

8

method level through measuring the performance measures such as accuracy, error rate,

precision, recall, F-measure, False positive, True Negative and Specificity.

Table 1: Object Oriented Metrics used (jetbrains.com/idea, 2018)

Metrics Description

1 B

Calculates the Halstead Bugs metric for a method. The Halstead

Bugs is intended as an estimate of the number of bugs in a method.

In practice, it has usually been found to underestimate. (B=V/3000)

2 CALL
Calculates the total number of method call expressions in each

method.

3 CLOC
Calculates the number of lines of comments in each method.

Whitespace is not counted for purposes of this metric.

4 COM_RAT
Calculates the ratio of lines of comments to total lines of code in

each method. Whitespace is not counted for purposes of this metric.

5 D

Calculates the Halstead Difficulty metric for a method. The Halstead

Difficulty is intended to correspond to the level of difficulty of

understanding a method. (D=(n1/2)*(N2*n2))

6 E

 Calculates the Halstead Effort metric for a method. The Halstead

Effort is intended to correspond to the level of effort necessary to

understand a method. (E=D*V)

7 EXEC

Calculates the total number of executable statements in each

method. Executable statements are defined to be any non-control

statement.

8 EXP Calculates the total number of expressions in each method.

9 iv(G)

Calculates the design complexity of a method. The design

complexity is related to how interlinked a methods control flow is

with calls to other methods. Design complexity ranges from 1 to

v(G), the cyclomatic complexity of the method.

10 LOC
 Calculates the number of lines of code in each method. Comments

are counted for purposes of this metric, but whitespace is not.

11 N

Calculates the Halstead Length metric for a method. The Halstead

length of a method is defined as the total number of operators and

operands in a method. (N=N1+N2)

12 n

Calculates the Halstead Vocabulary metric for a method. The

Halstead Vocabulary of a method is defined as the total number of

distinct operators and operands in a method. (n=n1+n2)

13 NCLOC
Calculates the number of non-comment lines of code in each

method. Comment and empty lines are not counted by this metric.

14 NP Calculates the number of parameters for each method.

www.manaraa.com

9

15 STAT Calculates the total number of statements in each method.

16 TCOM_RAT

Calculates the ratio of lines of comments to total lines of source

code in each method. Whitespace is not counted for purposes of this

metric.

17 QCP_CRCT

Calculates the Quality Criteria Profile (Correctness) of a method.

This is a synthetic metric, designed to estimate the difficulty of

determining the correctness of given method. Lower scores are

better. Quality Criteria Profile (Correctness) is defined as:

QCP_CRCT = D + CONTROL + EXECUTABLE + (2*V(g))

18 QCP_MAINT

Calculates the Quality Criteria Profile (Maintainability) of a method.

This is a synthetic metric, designed to estimate the difficulty of

maintenance for a given method. Lower scores are better. Quality

Criteria Profile (Maintainability) is defined as: QCP_MAINT =

(3*N) + EXEC + CONTROL + NEST + (2*V(g)) + BRANCH

19 QCP_RLBTY

Calculates the Quality Criteria Profile (Reliability) of a method.

This is a synthetic metric, designed to estimate the reliability of

given method. Lower scores are better. Quality Criteria Profile

(Correctness) is defined as: QCP_RLBTY = N + (2*NEST) +

(3*V(g)) + BRANCH + CONTROL + EXEC

20 V

Calculates the Halstead Volume metric for a method. The Halstead

Volume is intended to correspond to the size of a method, and is

defined as N * log(n), where N is the Halstead Length metric for the

method and n is the Halstead Vocabulary metric. (V=N*log2n)

21 V(G)

Calculates the cyclomatic complexity of each non-abstract method.

Cyclomatic complexity is a measure of the number of distinct

execution paths through each method. This can also be considered as

the minimal number of tests necessary to completely exercise a

method's control flow. In practice, this is 1 + the number of if's,

while's, for's, do's, switch cases, catches, conditional expressions,

&&'s and ||'s in the method.

www.manaraa.com

10

1.3.2 Research Motivation

Many researchers interest in the software fault prediction to be the evolutionary

research because of the importance of this topic in the software field. They build predictive

models to predict the fault, defect or bug in the software for many reasons that useful for

the software development life cycle. Most of the researches in this topic are examined on

the class level and package level, but rarely found researches that examine the predictive

models on the method level. Fault proneness prediction on the method level examined

using some random forest technique combined with historical metrics (Hata, et al, 2012).

But they didn’t examine more than one machine learning techniques combined with object

oriented metrics. This thesis aims to get new good results by using the proposed technique.

1.3.3 Research Questions

 Do object oriented metrics predict the software fault proneness on the method level

effectively?

 Which category of metrics is the best for the fault proneness prediction on the

method level?

 To which extent the studied metrics accomplish better performance in terms of

software fault proneness prediction?

 Which fault proneness prediction techniques is the most suitable for the method

level according the dataset applies on?

www.manaraa.com

11

1.3.4 Research Significance

This thesis desires to study the process of enhancing the fault proneness prediction

on the method level and producing high quality and reliability software, and how that can

leads to decrease the cost and time of the maintenance and complexity when predicting the

fault prone methods at the early stage of the software development life cycle.

1.3.5 Operational Definitions

- Software defect: “an imperfection or deficiency in a software product where the

product does not meet its requirement or specifications and needs to be either repaired

or replaced” (Hong, 2017).

- Software testing: is the procedure of executing the program with the purpose of

detecting errors (Banitaan, et al, 2013).

- Software fault proneness: “the probability of fault detection in a class” (Malhotra and

Jain, 2012).

- Software fault proneness prediction model: a model of classification the software

design entities into two categories; fault prone and non-fault prone (Scanniello, et al,

2013).

- Random Forest: “ensemble classifier that manipulates its input features and uses

decision trees as its base classifiers” (Hong, 2012).

- Error Seeding: “is one of the white box testing which is very fascinating to researcher

due to its approach to improve quality of software” (Gupta, 2016).

www.manaraa.com

12

Chapter Two

2. Literature Review

2.1 Software fault, bug and defect

Software defect as defined in (Hong, 2017) is “an imperfection or deficiency in a

software product where the product does not meet its requirement or specifications and

needs to be either repaired or replaced”. The model of software fault prediction based on

the metrics received the modules or the classes that quantified as a metric vector and

predicted the fault information. Classifications that are binary have an importance in the

researches which are determine if the module is fault prone or not. Defect attributes such as

priority or severity is not considered in the modules that predict the absence or presence of

the fault and that is a main problem in it. Defect severity is defined as “A measure of the

impact a defect has on a system and its users”. The capability of predicting the modules that

fault proneness in different categories of severity like low, high and not fault prone is much

better than binary classifications, because not all the defects have same severity. Through

predicting the critical problem in the system, the fault prediction model of the severity

enables the resource allocation, quality testing and refactoring with lower cost.

It is difficult to find bugs and fix them. Also, it is costly. And recently, there are

several techniques and tools developed to find bugs automatically through analyzing the

source code. (Rutar, et al, 2004) applied five different tools to find bugs, on various java

programs especially Bandera, ESC/Java 2, FindBugs, JLint, and PMD, They used diversity

of tools to be able to find warnings and bug reports. Their experimented results offer that

www.manaraa.com

13

the tools didn't cross over another means that the tools almost detect non overlapping bugs.

They discussed for each tool which techniques is based on, and they proposed the output of

the tools that affected by each techniques. finally they proposed a meta tools that joins the

output from the tools with each other’s, by take into account set of standards that many

tools alert about such as particular lined of code, classes and methods.

Models that have defects of course cause failures in the system, increase the cost of

the maintenance and development and decrease the satisfaction of the customers. In order

to improve quality assurance of the software and to help the developer to focus on the fault

prone modules by applying the activities of the quality assurance on it, the fault prediction

model is needed (Koru and Liu, 2005).

2.2Software Fault Proneness prediction

Different attributes can measure the software quality and one of them is the

software fault proneness. Software fault proneness is considered as dependent variable and

it defined as “the probability of fault detection in a class” (Malhotra and Jain, 2012).

Testing, software quality and software fault proneness become more important in

recent years regarding of improving efficiency of the process and minimizing the cost.

Software fault proneness estimating in the model is significant to minimize the cost and to

improve the efficiency of the process of software testing. We cannot measure the software

fault proneness of the software directly. We can estimate it by using the software metrics to

provide descriptions of the attributes of the program, and that descriptions are quantitative.

www.manaraa.com

14

Most of the studies work on finding the suitable software metrics that used in predicting the

fault proneness (Gondra, 2008, Singh, et al, 2009).

According to (Hong, 2012) software fault proneness prediction model is a model of

classification the software design entities into two categories; fault prone and non fault

prone. The capability of predicting the modules that fault proneness in different categories

of severity like low, high and not fault prone is much better than binary classifications,

because not all the defects have same severity (Scanniello, et al, 2013).

Software fault proneness may be predicted using machine learning methods by

using one metric or a more than one metric together (Malhotra and Jain, 2012, Gondra,

2008, Singh, et al, 2009, Rathore and Kumar, 2017). For example, decision table have been

used to predict the fault proneness, while the artificial neural networks used in predicting

value of fault proneness continuous measure (Malhotra and Jain, 2012).

In (Gondra, 2008), the author used the support vector machine (SVM) technique to

support the software fault proneness and classified the module to be with errors or with no

errors. In (Singh, et al, 2009), they found that SVM is achieving high accuracy in

predicting the fault proneness of the software. They found the metrics that are related to

fault proneness on the class level which are, SLOC (Source Lines of Codes), RFC

(Response For Class) and CBO (Coupling Between Object). Also, they concluded that

SVM model achieves the feasibility, adaptability to the object oriented systems and it is

useful for the fault proneness prediction for the classes.

Malhotra, et al, 2010 used the object oriented metrics to predict the fault proneness

and used the SVM machine learning technique to build the model of fault proneness,

assessing the software quality and to decide the feasibility and adaptability of this study.

www.manaraa.com

15

They use the ROC (Receiver Operating Characteristic) evaluation measure to validate the

SVM results and consider the accuracy of the predicted results from the ROC curve. Also,

they considered the accuracy of fault proneness predicting using object oriented metrics and

classified the faults according the severity into, low severity, medium severity and high

severity. The dataset used is KC1 NASA dataset (C++ dataset) to evaluate their work. They

found that SVM is predicting classes with faults with high accuracy. The object oriented

metrics that are related to fault proneness are SLOC, RFC and CBO while DIT (Depth of

Inheritence Tree) and NOC (Nomber Of Children) are not related to fault proneness. The

model that predicted with concern to the faults with high severity will has low accuracy.

Therefore, the best result in fault proneness prediction is for the faults of medium severity.

The appropriate metrics for the software fault proneness prediction are process

metrics such as; size, complexity, design features, performance, and quality level and

product metrics such as; Mean Time to Failure, Defect Density, Customer Problems and

Customer Satisfaction (Luo, et al, 2010).

The usefulness of the object oriented metrics for the software fault proneness was

studied by (Yu, et al, 2002). They used a tool to collect the metrics of the software. They

chose 5 attributes of object oriented software; reuse inheritance, cohesion, coupling, and

size the software. And used 8 metrics; 2 of them are traditional (fan in and LOC) and the

other 5 are Chidamber and Kemerer for object oriented metrics (CBO, DIT, NMC, RFC

and NOC).

Singh, et al, 2009, compared the performance of the ANN predictive model with the

DT, SVM and LR predictive models. They used 12 systems in java as a dataset and object

oriented metrics of Chidamber and Kemerer to find the relationship between these metrics

www.manaraa.com

16

with the fault proneness prediction on the class level they concluded that the LOC and RFC

are the best metrics to the fault proneness prediction. And NOC and DIT metrics are not

useful in the fault proneness prediction. Also, they concluded that DT, SVM and ANN are

better than the LR model in the performance of predicting the fault proneness.

Rathore and Kumar, 2017, proposed a recommendation system for helping the

researchers to select the suitable technique of fault prediction while building the predictive

model on the base of decision table concept.

2.3Software Fault Prediction using Machine Learning Techniques

Machine learning is used in several domains such as, bioinformatics, retail

companies, and financial institutions. The methods of machine learning used for predicting

the accuracy of the predicted model such as, genetic programming, multilayer perceptron,

support vector machine, adaboost, bagging and random forest (Malhotra and Jain, 2012).

A problem that attracted researchers which considered a challenge is fault

prediction. Researchers proposed techniques of fault prediction and evaluated their

performance using several datasets. They used the ensemble methods through applying

three base learners which are the radial basis function neural network, artificial neural

Network and logistic regression analysis. Also, they studied the fault prediction model

applied on 45 projects on the class level and proposed a model for cost evaluation of the

quality assurance of the software. They used the metrics of the source code as input for the

fault prediction model. And these metrics are considered as independent variable, while the

class category is considered as dependent variable. The dataset they used is from the

www.manaraa.com

17

repository of PROMISE that contains 45 open source projects from real life. They proposed

a framework to choose the suitable source code metrics that are effective in the fault

prediction model. They concluded that the most relevant metrics are LCOM (Lack of

cohesion of methods), WMC (Weighted Methods per Class), CBO and RFC (Kumar, et al,

2017).

Prediction is a significance process in the software development to avert the

confusion in the process of the software, to enhance quality and to minimize the time

complexity. The generality of the models of fault prediction is used the dataset from

previous for predicting the faults. The prediction models is useful in improving the

approach of the design through classify the alternative approach to the models of faults and

to improve the quality. The process of software development can be identified whether if it

in the right way or not through measuring the changes that happened. The quality is the

major factor for the success of the software, on the basis of the accurate work of the

software for the reason that was made. The authors used 4 classifiers (Lazy K-Star,

Random forest, Naive Bayes and J48) and compared between them to make the prediction

with high quality and by using the dataset of NASA and WEKA tool with the measures of

F-measure, recall, precision, false positive rate and true positive rate to detect the accuracy

in predictions. They found that the Naive Bayes was appropriate for the dataset which is

small and the random forest was appropriate for the dataset which is large (Sathyaraj and

Prabu, 2015).

One technique of the machine learning techniques is called ensemble learning

which is combines more than one algorithm of machine learning and trained them for

producing output better than the output of anyof them separately. There are two types of

www.manaraa.com

18

ensemble machine learning techniques, heterogeneous and homogenous ensembles. For the

heterogeneous ensemble, it develops each type of the base learner in different way by using

several techniques of Machine learning. By merging each prediction of the base learner

together, the dataset and the prediction are created. While for the homogeneous ensemble, it

uses different subsets of the whole training dataset for each base learner. To produce

satisfied conditions and to reach the suitable ensemble, there are two vital and primary

conditions; which are the accuracy and diversity. The authors compared between 3 of

measures of ensembles; boosting, bagging and stacking and evaluated the performance of

them with 11 base learners for the software defects prediction on the module level using the

NASA dataset. They found that boosting improves the performance better than the bagging

method in the accuracy. While for the stacking, the random forest is the best classifier for

improving the software defect prediction (Akour, et al, 2017).

For selecting the software metrics subsets that help in predicting the faulty classes,

(Catal, 2011)chose eight OSS (open source software) systems that have twenty internal

attributes and using the feature selection technique, then compared several classifications

since the classification is the most popular technique in machine learning. It is known as

“supervised statistical learning”. It trains the model using the data that class defined in

advance. The data is useful for the training of learning algorithm, and that causes of

creating the model that used in classifying the testing instances when the class labels value

is unknown. He compared several classifiers; which are known as the fault predictors with

high performance. The author compared between the classifiers based on two measures;

AUC (Area under receiver) and F-measure (precision and recall). The most effective

predictor for the accuracy in the field of software fault prediction is the AUC (Catal, 2011).

www.manaraa.com

19

Many methods were proposed for developing the predictive models of the software

fault proneness, the statistical techniques and machine learning and others. Machine

learning techniques are used to find the most appropriate metrics that predicts with the

errors. One of the machine learning techniques they used is the ANN and they used

historical data which is NASA dataset and applied the sensitivity analysis to determine

which software metric is important in the software fault proneness. Then they used the

SVM technique to support the software fault proneness and classified the module to be with

errors or with no errors. After the comparative experiment they found that the effectiveness

of the SVM is better than the ANN in the classification mission. The concentration of

machine learning field on the research of the algorithms which improve the performance of

them at the task they do by their experience. Over fitting problem is when the training data

has no errors and the function doesn’t generate the values correct for the data which unseen

previously. While, the generalization is when the function may generate the values correct

for the data which is new and not in the training data. And the hardest problem is having a

good generalization function. When the function complexity increases, the training errors

decrease. But when the generalization error increases, the complexity increases. The

technique that reduces the over fitting problem is the cross validation. Cross validation is

the set of disjoint from training data that used for the selection of a model. The useful of

using machine learning is to select the most appropriate software metrics that indicates the

software fault proneness by using the sensitivity analysis and to implement that model of

the fault proneness prediction on the base of these metrics (Gondra, 2008).

Software classifications used metrics of complexity as input vectors and used

algorithms applied on sufficient training data on the base of statistical methods and

www.manaraa.com

20

machine learning like case-based reasoning, support vector machines, logistic regression,

discriminated analysis, fuzzy classification, Bayesian models, decision table, neural

networks and genetic programming to build the predictive model. Based on researches used

NASA data set, Random Forest technique is better in performance of prediction comparing

with SVM and MLP. Random Forest is defined by(Hong, 2012) as “ensemble classifier that

manipulates its input features and uses decision table as its base classifiers”. Ensemble

techniques are techniques for classification to improve the accuracy of the classification

through aggregating multiple classifiers predictions. They constructed the random forest

model by using the WEKA tool which is a machine learning tool and used a dataset from

previous research.

Software fault proneness is an example of the software quality attributes and

predicted by using software metrics. Machine learning is used to predict the fault proneness

probability. They evaluated the performance of the support vector machine technique by

using one dataset of NASA which is KC1 and found the relation between the object

oriented metrics and the models of fault proneness. Also, they evaluated the predicted

model performance by using AUC, sensitivity, precision, specificity and completeness.

They found that SVM is achieving high accuracy in predicting the fault proneness of the

software. Support vector machine is a tool used for classifying the data. It used in a

successful way in different applications such as, text classification, face identification,

identification of organisms, Chinese character classification and pattern recognition. SVM

separates the dataset to 2 categories. They found the metrics that are related to fault

proneness which are, SLOC, RFC and CBO. Also, they found that SVM model achieves

www.manaraa.com

21

the feasibility, adaptability to the object oriented systems and it is useful for the fault

proneness prediction for the classes (Singh, et al, 2009).

2.4 Software Fault Prediction Using Metrics

The appropriate metrics for the software fault proneness prediction are process and

product metrics. The datasets took from MDP repositories (NASA Metrics Data) which

contain 11 datasets. To produce more useful predictive model, metrics and attributes must

mined to be more useful for the domain that applied on it and to avoid the metrics or

attributes that are not useful or make noise in the analysis. They used 9 techniques of data

reduction, and then used Naïve bays as a data miner and classifier to build the predictive

model for evaluating the methods of metrics reduction. For feature selection, they used CFS

as filter method and J48 as wrapper method. And to select the subset, they used the genetic

algorithm and best first. PCA and DWT are two effective methods for feature extraction

used in their study (Luo, et al, 2010).

Singh, et al, 2009, compared the performance of the ANN predictive model with the

DT, SVM and LR predictive models. They used 12 systems in java as a dataset and object

oriented metrics of Chidamber and Kemerer to find the relationship between these metrics

with the fault proneness prediction on the class level they concluded that the LOC and RFC

are the best metrics to the fault proneness prediction. And NOC and DIT metrics are not

useful in the fault proneness prediction. Also, they concluded that DT, SVM and ANN are

better than the LR model in the performance of predicting the fault proneness.

www.manaraa.com

22

Sureshm, et al, 2014, assessed the impact of the Chidamber and Kemerer metrics on

predicting the software fault prediction for the open source systems. They used machine

learning techniques for predicting faults (radial basis function network, functional link

artificial neural network and artificial neural Network) and classifying faults (probabilistic

neural network). The dataset used contains of 965 classes. 5 parameters used to measure

performance used (statistical analysis, precision, correctness, completeness, accuracy and

𝑅2 Statistic). They used MATLAB coding to support machine learning and statistical

methods for fault prediction. They concluded that WMC is the best useful from the 6 CK

metrics for fault prediction.

Boucher and Badri, 2016, focused on the effect of code metrics threshold, because

the models that based on it will be understood and implemented by the programmers or

software experts. Also, it can provide them with the reason of why the class is fault prone.

Threshold cannot be used for all projects and not all thresholds are good for fault

prediction. In their study, they compared two of the thresholds algorithms and considered

them in predicting faults. They used 5 different systems as datasets (Eclipse JDT Core,

JEdit, KC1, Apache IVY and Apache ANT) and Bayes Network as machine learning

classifier for fault prediction to give good results. Also, they assess the validity of the

method of Alves Rankings and ROC in software fault prediction and found that the method

of Alves Rankings gives good results and considered them as threshold techniques that do a

good job.

Jureczko and Spinellis, 2010, take into account object oriented metrics to build

defect prediction models. the models evaluated on five application and eleven open source

projects, a model built according to the data collected from version i of a project has been

www.manaraa.com

23

estimated by predicting the bugs in version i+1. Experimented results displayed that after

applying regression models with determined class size factor they can find 80% of bugs in

10.56% to 54.93% (μ=36.086; σ=10.435) of the classes. They found that WMC and LOC

are considered as factors for the class size in the models of fault detection.

Zimmermann and Nagappan, 2008, proposed a low level graph to enhance network

analysis which these graph may be used to allocate resources effectively and enable the

manager to recognize central program units that are more helpful to determine bugs. They

evaluated their study on Windows Server 2003, they reached that the recall for models

structured from complexity metrics is less 10% points than for models structured from

network measures. also, network measures recognized that 60% of the binaries that

developers of windows rated as critical , more than identified by complexity metrics.

www.manaraa.com

24

Chapter Three

3. Research Methodology

3.1 Overall Research Design

The proposed methodology shown in figure 1 that used in this thesis is explained in

this chapter with details about all phases. Our proposed technique is fault proneness

prediction model that used the Random Forest, J48, SVM, Decision Table and Naïve Bays

machine algorithm tested with the object oriented metrics to get the best results.

 Figure 1: Research Methodology

Comparing between selective machine learning

techniques

Comparing between OO metrics and

historical metrics

Applying OO metrics and machine learning

techniques on Java Dataset

Producing faulty & non-faulty methods using

manual error seeding (Creating Dataset 2)

Collecting JAVA codes

Producing OO metrics on the method level

with JAVA dataset using Intellij IDEA tool

(Creating Dataset 1)

www.manaraa.com

25

3.2 Research Phases

3.2.1 Phase one: Collecting Java codes

Fifteen Java codes have been collected on the base of predicting faults on the

method level using machine learning algorithms. Three codes of them (Ant, Cassandra and

Wicket) are collected from (Hata, et al, 2011). The codes contain faults caused by

manually mutation. Figure 2 shows an example of java source code.

Figure 2: Java source code

www.manaraa.com

26

Apache Ant is “a Java library and command-line tool whose mission is to drive

processes described in build files as targets and extension points dependent upon each

other. The main known usage of Ant is the build of Java applications. Ant supplies a

number of built-in tasks allowing to compile, assemble, test and run Java applications”

(ant.apache.org, 2018).

Apache Cassandra, “a top level Apache project born at Facebook and built

on Amazon’s Dynamo and Google’s BigTable, is a distributed database for managing large

amounts of structured data across many commodity servers, while providing highly

available service and no single point of failure. Apache Cassandra offers capabilities that

relational databases and other NoSQL databases simply cannot match such as: continuous

availability, linear scale performance, operational simplicity and easy data distribution

across multiple data centers and cloud availability zones” (cassandra.apache.org, 2016).

Wicket is “an open source Java component oriented web application framework that

powers thousands of web applications and web sites for governments, stores, universities,

cities, banks, email providers, and more. Wicket is one of the few survivors of the Java

server side web framework wars of the mid 2000's. Wicket is an open source, component

oriented, server side, Java web application framework” (wicket.apache.org, 2018).

Apache Log4j is “a Java-based logging utility. It was originally written by

CekiGülcü and is part of the Apache Logging Services project of the Apache Software

Foundation. Log4j is one of several Java logging frameworks”

(logging.apache.org/log4j/2.x, 2018).

http://cassandra.apache.org/
http://en.wikipedia.org/wiki/Apache_Cassandra#History
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html
https://en.wikipedia.org/wiki/Java_platform
https://en.wikipedia.org/wiki/Computer_data_logging
https://en.wikipedia.org/w/index.php?title=Ceki_G%C3%BClc%C3%BC&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Apache_Logging_Services&action=edit&redlink=1
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Java_logging_frameworks

www.manaraa.com

27

The goal of MARC4J is “to provide an easy to use Application Programming

Interface (API) for working with MARC and MARCXML in Java. MARC stands for

MAchine Readable Cataloging and is a widely used exchange format for bibliographic

data. MARCXML provides a loss-less conversion between MARC (MARC21 but also

other formats like UNIMARC) and XML” (github.com/marc4j/marc4j, 2018).

JTopas is “Java tokenizer and parser tools. The JTopas project provides a small,

easy-to-use Java library for the common problem of parsing arbitrary text data. These data

can come from a simple configuration file with a few comments, a HTML, XML or RTF

stream, source code of various programming languages etc. Sometimes a text has to be

parsed completely, sometimes only parts of it are important” (openhub.net/p/jtopas, 2018).

PureMVC is “a lightweight framework for creating applications based upon the

classic Model-View-Controller design meta-pattern. This is a Java port of the AS3

reference implementation of the MultiCore Version. It supports modular programming

through the use of Multiton Core actors instead of the Singletons used in the Standard

Version” (puremvc.org, 2016).

JPacman is “like game used for teaching software testing. It exposes students to the

use of git, maven, JUnit, and mockito. Parts of the code are well tested, whereas others are

left untested intentionally. As a student in software testing, you can extend the test suite, or

use the framework to build extensions in a test-driven way. As a teacher, you can use the

framework to create your own testing exercises” (github.com/SERG-Delft/jpacman-

framework, 2018).

https://github.com/marc4j/marc4j
https://www.openhub.net/p/jtopas
http://en.wikipedia.org/wiki/Model-view-controller
https://github.com/PureMVC/puremvc-as3-multicore-framework/wiki
https://github.com/PureMVC/puremvc-as3-multicore-framework/wiki
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Multiton
http://en.wikipedia.org/wiki/Singleton_pattern
https://github.com/PureMVC/puremvc-java-standard-framework/wiki
https://github.com/PureMVC/puremvc-java-standard-framework/wiki
http://puremvc.org/

www.manaraa.com

28

Commons-Lang is the “standard Java libraries fail to provide enough methods for

manipulation of its core classes. The Commons Lang Component provides these extra

methods. The Commons Lang Component provides a host of helper utilities for the java.

Lang API, notably String manipulation methods, basic numerical methods, object

reflection, creation and serialization, and System properties. Additionally it contains an

inheritable enum type, an exception structure that supports multiple types of nested-

Exceptions and a series of utilities dedicated to help with building methods, such as hash

Code, to String and equals. With version of commons-lang 3.x, developers decided to

change API and therefore created differently named artifact and jar files. This is the new

version, while apache-commons-Lang is the compatibility package”

(github.com/apache/commons-lang, 2018).

Apache Commons is “an Apache project focused on all aspects of reusable Java

components. The Apache Commons source code repositories are writable for all ASF

committers. While Apache Commons is a Commit-Then-Review community, we would

consider it polite and helpful for contributors to announce their intentions and plans on the

dev mailing list before committing code. All contributors should read our contributing

guidelines” (commons.apache.org, 2018).

http://commons.apache.org/mail-lists.html
http://commons.apache.org/patches.html
http://commons.apache.org/patches.html

www.manaraa.com

29

3.2.2 Phase Two: Producing OO metrics on the method level with JAVA dataset using

Intellij IDEA tool (Creating Dataset 1)

To predict the software fault, several metrics such as historical and object oriented

metrics used in different researches. The dataset used in researches may be private or

public. Everyone can use the public dataset for a lot of applications. Unlike the private

dataset that not everyone can access and in order to use these datasets, some procedures and

issues should be followed. In this thesis, the datasets is created through collecting JAVA

codes (large and small scales), and then import these codes into Intellij IDEA tool to extract

the desired metrics (features) as shown in table 1 before.

Figure 3 below shows the extracted results from Intellij IDEA tool that contains

methods as rows and each method has 44 metrics (features).

Figure 3: Intellij IDEA tool results (metrics)

www.manaraa.com

30

3.2.3 Phase Three: Producing faulty & non-faulty methods using manual error

seeding (Creating Dataset 2)

The class label as shown in figure 6 was created by using the manual error seeding

as shown in figure 2 and 3 below. Through changing in the source code of the methods, that

will cause faults. Then the method in the dataset will be faulty. And the rest will be not

faulty. After adding faults in the source code of the method, prediction of real faults on the

base of seeded faults is done.

Figure 4: Method before error seeding

Figure 5: Method after error seeding

www.manaraa.com

31

Figure 6: Class label

3.2.4 Phase Four: Applying OO metrics and machine learning techniques on Java

Dataset

In this step, the object oriented metrics (B, CALL, CLOC, COM_RAT, D, E, EXEC,

EXP, IV(G), LOC, N, n, NCLOC, NP, STAT, TCOM_RAT, , STAT, QCP_CRCT, QCP_MAINT,

QCP_RLBTY,V,V(G)) are extracted from the java codes after the error seeding to get new

values of features as shown in figure 7 below.

www.manaraa.com

32

Figure 7: metrics after error seeding

Then machine learning techniques are applied (Decision Table, J48, SVM, Naïve

Bays and Random forest) on the dataset to build the predictive model on method level

using python.

3.2.5 Phase Five: Comparing between OO metrics and historical metrics

In order to produce a better performance in predicting software fault proneness on

the method level, the object oriented metrics that shown in table 1 before and historical

metrics that shown in table 2 below, are being compared and decided which is the best set

of metrics that improve the software quality and reduce the cost and time in determining the

methods that contain faults.

www.manaraa.com

33

Table 2: Historical Metrics Description (Hata, et al, 2012)

Metrics Description

1 Code-Related Metrics
Churned LOC / Total LOC, and Deleted

LOC / Total LOC

2
Process-Related

Metrics

Changes, fixes, past bugs, Process

complexity metrics

3
Organizational

Metrics

Number of developers, Structure of

organization, Network metrics

4 Geographical Metrics locations

3.2.6 Phase Six: Comparing between machine learning techniques that used on the

method level

As an enhancement step in the software quality, several machine learning

techniques Decision Table, SVM, Naïve Bays, J48 and Random forest are compared to

determine which is the best machine learning techniques using the object oriented metrics

on method level.

3.2.6.1 Naïve Bays Algorithm:

The Naïve Bayes classifier, presently experiencing a renaissance in machine

learning, has long been a core technique in info retrieval. Number of the variations of Naïve

Bayes models used for text retrieval and classification, specializing in the spacing

assumptions created concerning word occurrences in documents (Lewis, D. D, 1998).

Naïve Bays is commonly used as a baseline in text classification as a result of its

quick and straight forward to implement. Its serve assumptions create such potency

potential, however additionally adversely has an effect on the standard of its results. With

www.manaraa.com

34

Naïve Bays classifiers lead to a fast algorithmic program that’s competitive with state of

the-art text classification algorithms such as the Support Vector Machine.

The Naïve Bayes model could be a heavily simplified Bayesian likelihood model.

The Naïve Bayes classifier operates on a powerful independence assumption; this

implies that the likelihood of 1attribute doesn't have an effect on the likelihood of the

opposite. Given a series of attributes, the naïve Bayes classifier makes

2n! Freelance assumptions. However, the results of the naïve Bayes classifier are often

correct.

3.2.6.2 J48 Algorithm:

J48 is an expansion of ID3. The further features of J48 are show cause for missing

values, attribute value ranges, decision trees pruning and derivation of rules. J48 is an open

source Java implementation algorithm; it generates based on particular identity of data and

it is objective is gradually generalized of a decision tree till it gains balance of accuracy and

flexibility (Kaur, G., et al. 2014)

J48 algorithm creates a decision tree based on the set of training instances. It depend

on agreedy–top-down approach to the build the decision tree; it starts with building a root

node, where the attribute is considered as the best classifies all the training instances is the

same process is reiterated for the rest of the attributes recursively till all the instances have

been classified. In order to select the best instances, the data gained from each instances is

calculated and the highest gained data is selected (Saravanan, N., et al. 2018).

www.manaraa.com

35

All decision trees are most powerful technique in data processing implementation

.A decision tree offers several benefits to data processing; it provides a

straightforward understanding for the implementation It also proceed with flawed datasets

or missing values and provides an improved prediction.J48 is capable of

handling each Nominal and numeric data (Onik, A. et al. 2015).

J48 scans for a surveillance list in an incremental technique. It finds one run at any

moment. Each time it finds a decision it adds it to finish the rundown standards, unhand the

cases secured by that administer from the preparation in order to find another lead for the

rest of the preparation cases. Classification of dengue dataset using J48 algorithm and ant

colony based AJ48 algorithm (Saravanan, N. et al, 2017).

J48 based on the concept of information entropy and inspect the difference in

entropy; this variation in entropy is called as normalized information. Attribute with highest

normalized information is used to make decisions. J48 works very well with both discrete

attributes and continuous attributes, also it gives an option for refining trees after creation

(Bhargava, N. et al, 2017)

3.2.6.3 Decision Table Algorithm:

The decision Table classifier (DTC) is one in all the doable approaches

to multistage decision making. The main idea of any multistage approach is to split up a

complex decision into unique several decisions, to get a final best solution obtained

(Safavian, S. et al, 1991).

www.manaraa.com

36

The ability of Decision tables is evaluated as a hypothesis for supervised learning

algorithms. Decision tables are one among the only hypothesis areas attainable, and

frequently they are straightforward to know. Decision tables show that on artificial and

real-world domains containing solely separate options, and a lot of datasets employed

in machine learning either don't need these options, or that these options have few values

(Kohavi, R. 1995).

The advantages of decision table include robustness based on simultaneous usage of

complementary recognition approaches and easy in dynamic adaptation. Decision tables are

represented as ranking of a given class. They can be integrated by a many methods that

reduce or the class set. These methods are acceptable regardless of the similarity between

the individual classifiers; the effectivity and efficiency of the methods has been shown in

many applications with real-world data. It is predicted that the decision tables are

applicable to many problem domains.

Each decision in the decision table is corresponded to a, relation, variable or

predicate whose probability values are within an alternatives. Each action in the decision

table is a procedure to be performed; one of the uses of decision tables is to detect

conditions under a certain input factor (Ho, T. et al, 1994).

One of the important approaches for decision-making and pattern recognition is a

decision table, which is based on specific attribute selection. Attribute selection is a process

of selecting the best subset of features by evaluating the performance of learning schemes

depending on different attribute subsets.

www.manaraa.com

37

Decision tables are significantly supreme to other models in terms of reliability,

accuracy and response time. Decision tables have not been used in many fields and its

results improved its high performance in classification (Chen, C., et al, 2016).

3.2.6.4 Random Forest Algorithm:

Random Forest (RF) could be a powerful machine learning classifier

that’s comparatively unknown in land remote sensing and has not been

evaluated completely by the remote sensing community compared to a lot of typical pattern

recognition techniques. Key benefits of RF include: their non-parametric nature; high

classification accuracy; and capability to see variable importance. However, the split rules

for classification are unknown, thus RF is thought of to be recording machine

kind classifier. RF provides Associate in Nursing algorithmic rule for estimating missing

values; and suppleness to perform many sorts of information analysis, as well as regression,

classification, survival analysis, and unsupervised learning (Rodriguez-Galiano, V. et al,

2012).

Random Forests (RF), does not need reduction of the

predictor before classification. To boot, RF yield variable importance measures for

every candidate predictor. The effectiveness of RF variable is its importance measures

in characteristic verity predictor among an oversized range of candidate predictors (Archer,

K. et al, 2008). A Random Forest (RF) classifier is an associate ensemble classifier that

produces multiple decision trees, employing a willy-nilly elite set of coaching samples and

variables. This classifier has become in style inside the remote sensing community because

www.manaraa.com

38

of the accuracy of its classifications. RF classifier handles high knowledge spatiality and

multi co linearity, being quick and insensitive to over fitting. It is, however, sensitive to the

sampling style. RF classifier has been extensively exploited in numerous situations, as an

example to cut back the amount of dimensions of hyper spectral knowledge (Belgiu, M et

al, 2016).

The random forest (RF) formula by Leo Breiman has become a

customary information analysis tool in bioinformatics. It has shown glorious performance

in settings wherever the quantity of variables is far larger than the quantity of

observations, RF development on applications of bioinformatics and machine biology.

Special attention is paid to sensible aspects like the choice of parameters, offered RF

implementations, and vital pitfalls and biases of RF and its variable importance measures

(Boulesteix, A. et al, 2012).

3.2.6.5 SVM Algorithm:

Support vector machine is one in all the foremost powerful learning algorithms

and is employed for a good range of real-world applications. The potency of

SVM formula and its performance principally depends on the kernel kind and its

parameters. Moreover, the feature set choice that's accustomed train the SVM model is

another necessary issue that encompasses a major influence on the classification accuracy.

The feature set choice could be an important step in machine learning, especially for

managing high dimensional dataset. Most of the previous

researches handled these necessary factors individually (Aljarah, I., et al, 2018).

www.manaraa.com

39

Support vector machine (SVM) is thought as a robust methodology

for resolution issues in nonlinear classification, perform estimation and density estimation.

SVM has been introduced at intervals the context of applied mathematics learning theory

and structural risk minimization. Least squares support vector machine (LS-SVM) is

reformulations from normal SVM that cause resolution linear Karush-Kuhn-Tucker (KKT)

systems. LS-SVM is closely associated with regularization networks

and Gaussian processes to emphasize and exploits primal-dual interpretations (Mustafa, M.

et al, 2012).

SVM is a theoretical machine learning classification technique that was adopted for

structural risk minimization, authors show an empirical analysis that use SVM on the

dataset with sound performance assessments. Therefore, authors have a tendency to utilize

SVM for the benchmark classification rule to notice the accuracy rate of the feature

subsets.SVM was 1st conferred at the Fifth Annual ACM Workshop

on Computation Learning Theory (COLT). SVM preprocessing data patterns at a usually a

lot of higher level than the initial feature subset. With associate acceptable non-linear

mapping to the high-dimensional subset (Zhang, Y., et al, 2018).

Support Vector Machines is one of the techniques that are used for pattern

classification and it is widely used in many application areas, kernel parameters is a major

factor that impacts accuracy classification. The objective of this research is to optimize the

best parameters and feature subset without degrading the SVM (Huang, C. et al, 2016).

www.manaraa.com

40

3.3 Datasets

The datasets that used in this thesis is JAVA Open Source Projects as shown in

table 3, (Malhotra and Jain, 2012, Hata, et al, 2012, Koru and Liu, 2005). The dataset

consists of fourteen java projects; three of them were large scale and the remaining eleven

were small scale. The overall extracted features were 44 features, but the number of

features after processing was 21 features as shown in table 1. We exclude the features that

make no difference on the results and have low variation that shown in table 6.

Table 3: Details of Datasets

Dataset # of instances # of Features #of Features after Processing Scale

Ant 14133 44 21 Large

Cassandra 15319 44 21 Large

Wicket 10310 44 21 Large

Apa 309 44 21 Small

apache-log4 4480 44 21 Large

cinema 326 44 21 Small

commons-codec 1321 44 21 Large

common-lang 5511 44 21 Large

iyad-marc4j 504 44 21 Small

jpacman 218 44 21 Small

jtopas1 433 44 21 Small

jtopas2 498 44 21 Small

puremvc 212 44 21 Small

realstate 483 44 21 Small

All projects of dataset are written in Java and have relatively object oriented

properties and faults. The projects were chosen because they span varied application

domains. Also, the open source projects are available for everyone in case of discovering

anything that needs to change.

www.manaraa.com

41

The datasets was normalized through rescaling attributes to the range -2 to 2 as

shown in figure 4 (Singhal, S., & Jena, M. 2013). And preprocessed to gain better results by

excluding the features in table 4 that have no effect on the dataset or have low variation as

shown in figure 5 on the base of information gain.

Figure 4: Normalized Dataset

www.manaraa.com

42

Figure 5: Processed Dataset

Table 4: Not used Object Oriented metrics (jetbrains.com/idea, 2018)

Metrics Description

1 IF_NEST Calculates the maximum depth of nesting of conditional (if) statements in

each method.

2 CDENS
Calculates the ratio of control statements to all statements for each method.

3 ev(G)

Calculates the essential complexity of each non-abstract method. Essential

complexity is a graph-theoretic measure of just how ill-structured a method's

control flow is. Essential complexity ranges from 1 to v(G), the cyclomatic

complexity of the method.

4
JLOC

Calculates the number of lines of javadoc comments in each method.

Whitespace is not counted for purposes of this metric.

5 LOOP_NEST Calculates the maximum depth of nesting of loop statements in each method.

For, while, and do-while loops are counted.

6 NEST Calculates the maximum nesting depth of each method.

7 TODO
Calculates the number of TODO comments in each method. The format of

TODO comments is defined in the Settings | Editor | TODO configuration

panel.

8 ASSERT Calculates the total number of assert statements in each method.

9 BRANCH
Calculates the total number of non-structured branch statements in each

method. Non-structured branch statements include continue statements and

branch statements outside of switch statements.

www.manaraa.com

43

10 CONTROL
Calculates the total number of control statements in each method. Control

statements include if, for, while, do, try, break, continue, switch, and

synchronized statements.

11 CAUGHT
Calculates the number of exception classes which are caught in each method.

12 THROWS Calculates the number of exception classes each method declares in its

"throws" clause.

13 IMP
 Calculates the number of concrete implementation of each abstract method.

14 LOOP Calculates the total number of loop statements in each method. For, while,

and do-while loops are counted.

15 NULL Calculates the number of comparisons with null in each method.

16 OVER Calculates the number of times each non-abstract method is overridden.

17 RETURN
Calculates the total number of return points for each method. This includes

any return statements as well as the implicit return at the end of constructors

and methods returning void.

18 CALLED
Calculates the number places in the project at which each method may be

called. This includes both calls to the method directly and calls to any method

which it overrides.

19 CALLEDp
Calculates the number places in the product code of the project at which each

method may be called. This includes both calls to the method directly and

calls to any method which it overrides.

20 CALLEDt
Calculates the number places in the test code of the project at which each

method may be called. This includes both calls to the method directly and

calls to any method which it overrides.

21 CAST
Calculates the number of typecast or instance of expressions in each non-

abstract method. Excessive use of typecasting may be a sign of an ill-

structured program.

22 NTP Calculates the total number of type parameters of each method.

23 RLOC
Calculates ratio of lines of code for a method to the lines of code for it's

containing class. Methods which have high relative lines of code values may

indicate poor abstraction.

www.manaraa.com

44

3.4 Research Tools and Applications

In this thesis, the following tools used:

Intellij Idea Tool: “is a special programming environment or integrated

development environment (IDE) largely meant for Java. This environment is used

especially for the development of programs. It is developed by JetBrains, which was

formally called IntelliJ. It is available in two editions: the Community Edition which is

licensed by Apache 2.0, and a commercial edition known as the Ultimate Edition. Both of

them can be used for creating software which can be sold. What makes IntelliJ IDEA so

different from its counterparts is its ease of use, flexibility and its solid design.”

(jetbrains.com/idea, 2018).

WEKA Tool: “WEKA is a workbench for machine learning that is designed to

assist machine learning techniques to a diversity of real-world problems; it provides a

working environment for the domain specialist, and it provides wealth interactive tools for

data manipulation, result visualization, database linkage, and classification techniques.”

(Holmes., et al., 1994).

Python: “is developed under an OSI-approved open source license, making it freely

usable and distributable, even for commercial use. Python's license is administered by the

Python Software Foundation” (python.org/about, 2018)

https://www.python.org/psf

www.manaraa.com

45

Chapter Four

4. Experiment Setup

In order to evaluate the proposed methodology, dataset on method level is created

by using Intellij IDEA tool which extracts 44 features through importing java projects; we

decided to use 21 features of them as shown in table 1 after preprocessing the data using

WEKA 2017 and excluding the recent 23 feature as shown in table 4 before. After that

class label is determined by using error seeding manually.

Using python, datasets were normalized and machine learning algorithms are

applied on them for software fault proneness prediction. To evaluate the results, evaluation

measures are used in python.

4.1 Evaluation Measures

Six evaluation measures are used in this thesis, which are in the following table.

Table 5: Evaluation Measures

Evaluation

Measure equation

Accuracy TP+TN/(TN+FP+FN+TP)

Error Rate FP+FN/(TN+FP+FN+TP)

Precision TP/(TP+FP)

Recall TP/(TP+FN)

F-measure 2 (precision * recall)/(precision+recall)

Specificity TN/(TN+FP)

TP: true positive TN: true negative FP: false positive FN: false negative

www.manaraa.com

46

True Positive is the correctly predicted positive result, while the False Positive is the

incorrectly predicted positive result. (Sathyaraj and Prabu, 2015). True Negative is the correctly

predicted negative result, while the False Negative is the incorrectly predicted negative result

(Malhotra, R., 2015). The evaluation measures used to evaluate the results gained from

applying machine learning algorithms.

4.2 Experiment 1: Extracting Metrics

Intellij IDEA tool is used to extract the features from java projects. Metrics reloaded

plug-in is installed within the tool to get metrics values (features), then java projects are

imported into the tool through import project tab. To get metrics values, from analyze tab,

calculate metrics is chosen. After that metrics profiles are named and determined to be on

method level. And finally, the results are exported to CSV file.

4.3 Experiment 2: Error Seeding and Mutation

Mutation testing is one of the white box testing which is very fascinating to

researcher due to its approach to improve quality of software. In this testing technique the

software is tested to check the completeness of test suite which in turns ensures the quality

of software. In Mutation testing simple bugs are introduced in the program to check the

adequacy of the test suite. If test suite fails to identify the seeded faults then effective test

cases are added to it to make it sufficiently strong. The objective of mutation testing is to

find the flaws of test suite and then modifying suite to ensure its reliability in finding errors.

www.manaraa.com

47

Mutation testing is based on two assumptions: the competent programmer

hypothesis and the coupling effect. The competent programmer hypothesis supposes that

although program is written by skilled programmer but it may not be error free. It may

contain very small error that may deviate program output of program from the intended

one. The coupling effect is based on fact that detection of small errors may cause the

identification of big faults. That is simple errors in a program may be associated with

complex error (Khan, T., 2015).

Mutants are the key components of the mutation testing. A mutant is version of

original program under test in which simple bug is added intuitively. Each mutant contains

one simple error. The success of mutation testing depends on the number of mutants

generated. On the basis of concept of mutant generation, Mutants can be of different types:

Syntactical mutants: Mutants that are generated by making change in syntax of the

program. There mutants can be detected by the compiler. For example: x=zy++. Minor

mutants: Mutants that can be detected by any test case of the test suit. Equivalent mutant:

These mutants are not detected by any test case because, these are not actually errors. These

mutants produce the same output as that of original program. Value mutant: these mutants

are generated by changing the value of constants and variable across the boundary values

that is by replacing values to either too large or too small numbers. Condition Mutants:

These mutants are generated to check the efficiency of test cases related to decision control

statements accuracy. This can be done by replacing arithmetic, relational or logical

operators in conditions. Statement mutants: In these mutants the statements are removed,

replaced or duplicated to check the efficiency of test cases. From the point of testing the

www.manaraa.com

48

value mutants, condition mutants and statement mutants are more useful as they help to

find the inefficiency of test cases

Mutation testing involves generation of mutants, testing and analyzing the

outcomes. The whole process can be implemented by following the given steps:

Step 1: Generation of mutants: For the program under test various mutants are

generated. These mutants may be generated by introducing errors by replacing any

operator, operand or statement of the program.

Step 2: Testing: In second step the original program as well as the generated mutant

is tested against all test cases of test suite.

Step 3: Comparison of test outcome: Now the outcome of mutant program is tested

with that of original program. If outcome is different, then mutant is killed that is it is not

further tested with rest of the cases of test suite. It interprets that test suite is robust enough

to handle the particular fault added in the killed mutant.

Step 4: Updating of test suite: In the previous step if the outcomes of mutant and

original programs is same for all the test cases of test suite it may further have two

interpretations. One the mutant is equivalent mutant of the original program. An equivalent

mutant is a version of original program that has different syntax but same semantic as that

of original program. Two, the test suite is not adequate to handle that particular fault so

more effective test case is added to test suite so that one particular fault can be identified by

testing. These steps are repeated for all mutants and for each mutant for all test cases in test

suite. But this testing should be stopped if specified reliability of test suit has been achieved

www.manaraa.com

49

or if pursuing further in testing is resulting in much testing cost as compared to benefit from

it (Khan, T., 2015).

4.4 Experiment 3: implementation

The libraries of machine learning algorithms are installed in MATLAB framework

and python. The datasets are inserted into MATLAB and python, and five machine

learning algorithms are applied on them to get the results. Each machine learning

algorithm is repeated 100 times and 10 fold cross validation is used for training and testing

datasets. Machine learning algorithms are applied on the dataset before preprocessing and

after preprocessing.

The following tables show the result of applying the algorithms on the large scale

dataset (processed and unprocessed):

Table 6: Naive Bays Algorithm on Large Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Ant 90.035 9.965 0.992 0.906 0.947 9.900 4.800 0.327

naive bays Cassandra 92.752 7.248 0.991 0.935 0.962 26.620 5.580 0.173

Wicket 92.849 7.151 0.991 0.936 0.963 15.130 4.170 0.216

Table 7: Naive Bays Algorithm on Large Scale Unprocessed Dataset

u
n

p
ro

ce
ss

e

d
 d

at
a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Ant 88.607 11.393 0.994 0.891 0.939 8.150 6.550 0.446

naive bays Cassandra 88.788 11.212 0.992 0.894 0.940 20.760 11.440 0.355

Wicket 91.227 8.773 0.992 0.919 0.954 13.650 5.650 0.293

www.manaraa.com

50

Table 8: J48 Algorithm on Large Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Ant 98.958 1.042 0.990 1.000 0.995 14.700 0.000 0.000

J48 Cassandra 95.853 4.147 0.990 0.968 0.979 0.913 0.087 0.087

Wicket 98.953 1.047 0.990 1.000 0.995 19.300 0.000 0.000

Table 9: J48 Algorithm on Large Scale Unprocessed Dataset

u
n
p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Ant 98.944 1.056 0.990 1.000 0.995 14.690 0.010 0.001

J48 Cassandra 98.948 1.052 0.990 1.000 0.995 32.120 0.080 0.002

Wicket 98.951 1.049 0.990 1.000 0.995 19.060 0.240 0.012

Table 10: Decision Table Algorithm on Large Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Ant 98.960 1.040 0.990 1.000 0.995 14.700 0.000 0.000

Decision Table Cassandra 97.899 2.101 0.979 1.000 0.989 32.000 0.000 0.000

Wicket 98.953 1.047 0.990 1.000 0.995 19.300 0.000 0.000

www.manaraa.com

51

Table 11: Decision Table Algorithm on Large Scale Unprocessed Dataset

u
n

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Ant 98.960 1.040 0.990 1.000 0.995 14.700 0.000 0.000

Decision Table Cassandra 97.910 2.090 0.979 1.000 0.989 31.450 0.550 0.017

Wicket 98.886 1.114 0.989 1.000 0.994 11.500 0.000 0.000

Table 12: Random Forest Algorithm on Large Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Ant 99.013 0.987 0.991 1.000 0.995 13.300 1.400 0.095

Random Forest Cassandra 97.943 2.057 0.980 0.999 0.990 29.860 2.140 0.067

Wicket 98.924 1.076 0.990 0.999 0.995 10.520 0.980 0.085

Table 13: Random Forest Algorithm on Large Scale Unprocessed Dataset

u
n
p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Ant 98.990 1.010 0.990 1.000 0.995 13.650 1.050 0.071

Random Forest Cassandra 98.040 1.960 0.981 0.999 0.990 28.740 3.260 0.102

Wicket 98.942 1.058 0.990 1.000 0.995 10.550 0.950 0.083

Table 14: SVM Algorithm on Large Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Ant 98.957 1.043 0.990 1.000 0.995 14.700 0.000 0.000

SVM Cassandra 97.911 2.089 0.979 1.000 0.989 32.000 0.000 0.000

Wicket 98.884 1.116 0.989 1.000 0.994 11.500 0.000 0.000

www.manaraa.com

52

Table 15: SVM Algorithm on Large Scale Unprocessed Dataset

u
n

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Ant 98.960 1.040 0.990 1.000 0.995 14.700 0.000 0.000

SVM Cassandra 97.911 2.089 0.979 1.000 0.989 32.000 0.000 0.000

Wicket 98.886 1.114 0.989 1.000 0.994 11.500 0.000 0.000

The following tables show the result of applying the algorithms on the small scale

dataset (processed and unprocessed):

Table 16: Naive Bays Algorithm on small Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Apa 86.528 13.472 0.997 0.867 0.925 0.100 0.030 0.231

Naïve Bays

apache-log4 92.758 7.242 0.990 0.936 0.962 4.230 0.470 0.100

cinema 42.536 57.464 0.983 0.428 0.585 0.300 0.100 0.250

commons-codec 93.015 6.985 0.987 0.940 0.960 1.410 0.290 0.171

common-lang 23.194 76.806 0.991 0.226 0.368 1.120 4.580 0.804

iyad-marc4j 29.061 70.939 0.995 0.286 0.429 0.100 0.400 0.800

jpacman 90.024 9.976 0.991 0.909 0.946 0.200 0.000 0.000

jtopas1 63.401 36.599 0.997 0.633 0.765 0.110 0.390 0.780

jtopas2 81.028 18.972 0.992 0.815 0.894 0.320 0.180 0.360

puremvc 91.171 8.829 0.995 0.916 0.952 0.100 0.200 0.667

realstate 66.652 33.348 0.991 0.667 0.789 0.210 0.290 0.580

www.manaraa.com

53

Table 17: Naive Bays Algorithm on small Scale Unprocessed Dataset

u
n

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Apa 88.318 11.682 0.994 0.888 0.936 0.180 0.220 0.550

Naïve Bays

apache-log4 87.437 12.563 0.990 0.882 0.924 3.920 0.780 0.166

cinema 59.077 40.923 0.988 0.595 0.735 0.270 0.130 0.325

commons-codec 91.439 8.561 0.988 0.924 0.952 1.350 0.350 0.206

common-lang 25.658 74.342 0.994 0.250 0.400 0.850 4.850 0.851

iyad-marc4j 35.576 64.424 0.990 0.354 0.513 0.200 0.300 0.600

jpacman 93.439 6.561 0.991 0.943 0.965 0.200 0.000 0.000

jtopas1 86.429 13.571 0.998 0.865 0.926 0.100 0.400 0.800

jtopas2 87.220 12.780 0.994 0.876 0.931 0.270 0.230 0.460

puremvc 88.554 11.446 0.995 0.889 0.937 0.100 0.200 0.667

realstate 85.303 14.697 0.995 0.856 0.919 0.200 0.300 0.600

Table 18: J48 Algorithm on small Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000

J48

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000

www.manaraa.com

54

Table 19: J48 Algorithm on small Scale Unprocessed Dataset

u
n

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000

J48

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000

realstate 98.825 1.175 0.990 0.999 0.994 0.500 0.000 0.000

Table 20: Decision Table Algorithm on small Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000

Decision Table

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000

www.manaraa.com

55

Table 21: Decision Table Algorithm on small Scale Unprocessed Dataset

u
n

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000

Decision Table

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000

Table 22: Random Forest Algorithm on small Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000

Random Forest

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000

puremvc 98.545 1.455 0.986 1.000 0.993 0.300 0.000 0.000

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000

www.manaraa.com

56

Table 23: Random Forest Algorithm on small Scale Unprocessed Dataset

u
n

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000

Random Forest

apache-log4 98.804 1.196 0.990 0.998 0.994 4.460 0.240 0.051

Cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000

common-lang 98.786 1.214 0.990 0.998 0.994 5.690 0.010 0.002

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000

Jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000

jtopas1 98.709 1.291 0.988 0.999 0.993 0.500 0.000 0.000

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000

Puremvc 98.545 1.455 0.986 1.000 0.993 0.300 0.000 0.000

Realstate 98.950 1.050 0.990 1.000 0.995 0.500 0.000 0.000

Table 24: SVM Algorithm on small Scale Processed Dataset

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o
si

ti
v
e

T
ru

e

N
eg

at
iv

e

S
p
ec

if
ic

it
y

A
lg

o
ri

th
m

Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000

SVM

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000

www.manaraa.com

57

Table 25: SVM Algorithm on small Scale Unprocessed Dataset

u
n

p
ro

ce
ss

ed

d
at

a

A
cc

u
ra

cy

E
rr

o
r

R
at

e

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

F
al

se

p
o

si
ti

v
e

T
ru

e

N
eg

at
iv

e

S
p

ec
if

ic
it

y

A
lg

o
ri

th
m

Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000

SVM

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000

jtopas2 99.000 1.000 0.989 0.964 0.970 0.500 0.000 0.000

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000

www.manaraa.com

58

Chapter Five

5. Results Discussion

A few researches discuss the software fault proneness prediction at method level.

One of these few researches discussed the method level fault prediction, but it used

historical metrics which related to control version (Hata, et al, 2012). The dataset for this

paper is gained through contacting the authors but without details about how it was built

depending on class label. This ambiguous dataset motivate us to find the projects of it and

create new dataset of these projects with different metrics type and discover how the class

label is built.

They used the historical metrics on method level and applied one machine learning

algorithm, this motivate us to use object oriented metrics on method level and apply more

machine learning algorithms.

The result in our developed approach we gained from applying python on the

dataset is compared with (Hata, et al, 2012) depending on error rate. It is obvious that the

result in our developed approach using Random Forest is better than their result as shown

in Table 28. In this thesis another 4 classifiers used to predict faults on the method level.

www.manaraa.com

59

Table 26: Comparison of Error Rate

Dataset Error Rate Error Rate (Hata, et al, 2012) Algorithm

Ant 1.010 1.600

Random Forest Cassandra 1.960 6.300

Wicket 1.058 0.800

Based on comparison between processed and unprocessed datasets for the large

scale as shown in the tables before, it is obvious that the processed data is a little bit better

than the unprocessed data for the large scale datasets.

While based on comparison between processed and unprocessed data for the small

scale datasets, it is obvious that there is no effect of preprocessing the dataset to get better

results for all algorithms.

Based on the tables before of the evaluation measures the results show that for the

accuracy and error rate the best algorithm is Random Forest and the descending order for

the algorithms is: Random Forest, Decision Table, J48, SVM and the last one is Naïve

Bays. While for the precision the descending order is Naïve Bays, Random Forest, J48,

SVM and Decision Table. For the recall the order is Decision Table, SVM, J48, Naïve Bays

and Random Forest. The false-positive order is Decision Table, SVM, J48, Random Forest

and Naïve Bays. F-measure order is Random Forest, SVM, Decision Table, J48 and Naïve

Bays. Finally, the Specificity and True-negative order is Naïve Bays, Random Forest, J48,

Decision Table and SVM.

www.manaraa.com

60

Chapter Six

6. Conclusion and Future Work

Software fault proneness prediction on the method level was done using building a

predictive model that use five machine learning algorithms which are Random Forest, J48,

Naïve Bays, Decision Table and SVM and selected object oriented metrics mentioned

before.

The result in our developed approach is compared with (Hata, et al, 2012)

depending on error rate. It is obvious that the result in our developed approach using

Random Forest is better than their results.

Based on comparison between processed and unprocessed datasets for the large

scale as, it is obvious that the processed data is a little bit better than the unprocessed data

for the large scale datasets. While based on comparison between processed and

unprocessed data for the small scale datasets as, it is obvious that there is no effect of

preprocessing the dataset to get better results for all algorithms.

The evaluation measures the results show that for the accuracy and Error rate the

best algorithm is Random Forest and the descending order for the algorithms is: Random

Forest, Decision Table, J48, SVM and the last one is Naïve Bays. While for the precision

the descending order is Naïve Bays, Random Forest, J48, SVM and Decision Table. For the

recall the order is Decision Table, SVM, J48, Naïve Bays and Random Forest. The false-

positive order is Decision Table, SVM, J48, Random Forest and Naïve Bays. F-measure

www.manaraa.com

61

order is Random Forest, SVM, Decision Table, J48 and Naïve Bays. Finally, the Specificity

and True-negative order is Naïve Bays, Random Forest, J48, Decision Table and SVM.

In this thesis three out of rate projects are used for the software fault proneness

prediction. As a future work, five other projects will be used.

www.manaraa.com

62

7. References

Akour, M., Alsmadi, I. and Alazzam, I., 2017. Software fault proneness prediction: a

comparative study between bagging, boosting, and stacking ensemble and base learner

methods. International Journal of Data Analysis Techniques and Strategies, 9(1), pp.1-16.

Alenezi, M., Banitaan, S. and Obeidat, Q., 2014. Fault-proneness of open source systems:

An empirical analysis. The International Arab Conference on Information Technology

(ACIT2014) Synapse, 1, p.256.

Aljarah, I., Ala’M, A. Z., Faris, H., Hassonah, M. A., Mirjalili, S., and Saadeh, H. 2018.

Simultaneous feature selection and support vector machine optimization using the

grasshopper optimization algorithm. Cognitive Computation, pp. 1-18.

Announcing Apache Wicket 8: Write Less, Achieve More. 2018. Retrieved from

http://wicket.apache.org/.

Apache Log4j 2. 2018. Retrieved from https://logging.apache.org/log4j/2.x/.

Apache. 2018. Apache/commons-lang. Retrieved from

https://github.com/apache/commons-lang.

Archer, K. J., and Kimes, R. V. 2008. Empirical characterization of random forest variable

importance measures. Computational Statistics & Data Analysis, 52(4), pp. 2249-2260.

Banitaan, S., Alenezi, M., Nygard, K. and Magel, K., 2013, April. Towards test focus

selection for integration testing using method level software metrics. In Information

Technology: New Generations (ITNG), 2013 Tenth International Conference on (pp. 343-

348). IEEE.

Belgiu, M., and Drăguţ, L. 2016. Random forest in remote sensing: A review of

applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing,

114, pp. 24-31.

http://wicket.apache.org/
https://logging.apache.org/log4j/2.x/
https://github.com/apache/commons-lang

www.manaraa.com

63

Bhargava, N., Sharma, S., Purohit, R., and Rathore, P. S. 2017, October. Prediction of

recurrence cancer using J48 algorithm. In Communication and Electronics Systems

(ICCES), 2017 2nd International Conference on (pp. 386-390). IEEE.

Boucher, A. and Badri, M., 2016, December. Using Software Metrics Thresholds to Predict

Fault- Classes in Object-Oriented Software. In Applied Computing and Information

Technology/3rd Intl Conf on Computational Science/Intelligence and Applied

Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science & Engineering

(ACIT-CSII-BCD), 2016 4th Intl Conf on (pp. 169-176). IEEE.

Boulesteix, A. L., Janitza, S., Kruppa, J., and König, I. R. 2012. Overview of random forest

methodology and practical guidance with emphasis on computational biology and

bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

2(6), pp. 493-507.

Catal, C., 2011. Software fault prediction: A literature review and current trends. Expert

systems with applications, 38(4), pp.4626-4636.

Chen, C., Zhang, G., Yang, J., and Milton, J. C. 2016. An explanatory analysis of driver

injury severity in rear-end crashes using a decision table/Naïve Bayes (DTNB) hybrid

classifier. Accident Analysis & Prevention, 90, pp. 95-107.

Giger, E., D'Ambros, M., Pinzger, M. and Gall, H.C., 2012, September. Method-level bug

prediction. In Proceedings of the ACM-IEEE international symposium on Empirical

software engineering and measurement (pp. 171-180). ACM.

Gondra, I., 2008. Applying machine learning to software fault-proneness prediction.

Journal of Systems and Software, 81(2), pp.186-195.

Gupta, D., October, 2016. Mutation Testing: An Error Seeding Software Testing

Technique. International Journal of Advance Research in Science and Engineering, 5(10).

Gupta, D.L. and Malviya, A.K., 2011. Observations on Fault Proneness Prediction Models

of Object-Oriented System to Improve Software Quality. International Journal of

Advanced Research in Computer Science, 2(2).

www.manaraa.com

64

Hall, C. 2018. The PureMVC Framework Code at the Speed of Thought. Retrieved from

http://puremvc.org/.

Hata, H., Mizuno, O. and Kikuno, T., 2012, June. Bug prediction based on fine-grained

module histories. In Proceedings of the 34th International Conference on Software

Engineering (pp. 200-210). IEEE Press.

Hata, H., Mizuno, O. and Kikuno, T., 2011, September. Historage: fine-grained version

control system for java. In Proceedings of the 12th International Workshop on Principles of

Software Evolution and the 7th annual ERCIM Workshop on Software Evolution (pp. 96-

100). ACM.

Ho, T. K., Hull, J. J., and Srihari, S. N. 1994. Decision combination in multiple classifier

systems. IEEE transactions on pattern analysis and machine intelligence, 16(1), pp. 66-75.

Holmes, G., Donkin, A., and Witten, I. H. 1994. "Weka: A machine learning workbench.

In Intelligent Information Systems". Proceedings of the 1994 Second Australian and New

Zealand Conference on (pp. 357-361). IEEE.

Hong, E., 2012, October. Software Fault-proneness Prediction using Random Forest.

International Journal of Smart Home, 6(4).

Hong, E., 2017. Software Fault-proneness Prediction using Module Severity Metrics.

International Journal of Applied Engineering Research, 12(9), pp.2038-2043.

Hovemeyer, D. and Pugh, W., 2004. Finding bugs is easy. ACM Sigplan Notices, 39(12),

pp.92-106.

Huang, C. L., and Wang, C. J. 2006. A GA-based feature selection and parameters

optimization for support vector machines. Expert Systems with applications, 31(2), pp. 231-

240.

JetBrains.com/idea, 2018. Jet Brains Co. IntelliJ®IDEA 7.0 retrieved from

http://www.jetbrains.com/idea/

http://puremvc.org/

www.manaraa.com

65

Jureczko, M. and Spinellis, D., 2010. Using object-oriented design metrics to predict

software defects. Models and Methods of System Dependability.

OficynaWydawniczaPolitechnikiWrocławskiej, pp.69-81.

Kaur, G., and Chhabra, A. 2014. Improved J48 classification algorithm for the prediction of

diabetes. International Journal of Computer Applications, 98(22).

Khan, T. A., Muzammal, M., and Ijaz, A. 2015, December. On effectiveness of fault-

seeding using interaction patterns. In Frontiers of Information Technology (FIT), 2015 13th

International Conference on (pp. 119-124). IEEE.

Kohavi, R. 1995, April. The power of decision tables. In European conference on machine

learning (pp. 174-189). Springer, Berlin, Heidelberg.

Koru, A.G. and Liu, H., 2005. Building effective defect-prediction models in practice.

IEEE software, 22(6), pp.23-29.

Kumar, L., Rath, S. and Sureka, A., 2017. Using Source Code Metrics and Ensemble

Methods for Fault Proneness Prediction. arXiv preprint arXiv:1704.04383.

Lewis, D. D. 1998, April. Naive Bayes at forty: The independence assumption in

information retrieval. In European conference on machine learning (pp. 4-15). Springer,

Berlin, Heidelberg.

Luo, Y., Ben, K. and Mi, L., 2010. Software metrics reduction for fault-proneness

prediction of software modules. Network and Parallel Computing, pp.432-441.

MacNeill, C., and Bodewig, S. 2018. Welcome. Retrieved from http://ant.apache.org/.

Malhotra, R. and Jain, A., 2012. Fault prediction using statistical and machine learning

methods for improving software quality. Journal of Information Processing Systems, 8(2),

pp.241-262.

http://ant.apache.org/

www.manaraa.com

66

Malhotra, R., 2015. A systematic review of machine learning techniques for software fault

prediction. Applied Soft Computing, 27, pp.504-518.

Malhotra, R., Kaur, A. and Singh, Y., 2010. Empirical validation of object-oriented metrics

for predicting fault proneness at different severity levels using support vector machines.

International Journal of System Assurance Engineering and Management, 1(3), pp.269-

281.

Manage massive amounts of data, fast, without losing sleep. 2018. Retrieved from

http://cassandra.apache.org/.

Marc4j. 2018. Marc4j/marc4j. Retrieved from https://github.com/marc4j/marc4j.

Moukhafi, M., El Yassini, K., and Bri, S. 2018. A novel hybrid GA and SVM with PSO

feature selection for intrusion detection system. IJASRE, 4.’

Mukherjee, S., and Sharma, N. 2012. Intrusion detection using naive Bayes classifier with

feature reduction. Procedia Technology, 4, pp. 119-128.

Mustafa, M. W., Sulaiman, M. H., Khalid, S. A., and Shareef, H. 2012. Hybrid Genetic

Algorithm-Support Vector Machine Technique for Power Tracing in Deregulated Power

Systems. In Real-World Applications of Genetic Algorithms. InTech.

Onik, A. R., Haq, N. F., Alam, L., and Mamun, T. I. 2015. An analytical comparison on

filter feature extraction method in data mining using J48 classifier. International Journal of

Computer Applications, 124(13).

Openhub.net. 2018. JTopas. Retrieved from http://www.openhub.net/p/jtopas.

Python.org, 2018, [online], puthon.org retrieved from https://www.python.org/about/

Rathore, S.S. and Kumar, S., 2017. A decision tree logic based recommendation system to

select software fault prediction techniques. Computing, 99(3), pp.255-285.

http://cassandra.apache.org/
https://github.com/marc4j/marc4j
http://www.openhub.net/p/jtopas
https://www.python.org/about/

www.manaraa.com

67

Rennie, J. D., Shih, L., Teevan, J., and Karger, D. R. 2003. Tackling the poor assumptions

of naive bayes text classifiers. In Proceedings of the 20th international conference on

machine learning (icml-03) (pp. 616-623).

Rish, I. 2001, August. An empirical study of the naive Bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence 3(22), pp. 41-46. New York: IBM.

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J.

P. 2012. An assessment of the effectiveness of a random forest classifier for land-cover

classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, pp. 93-104.

Rutar, N., Almazan, C.B. and Foster, J.S., 2004, November. A comparison of bug finding

tools for Java. In Software Reliability Engineering, 2004. ISSRE 2004. 15th International

Symposium on (pp. 245-256). IEEE.

Safavian, S. R., and Landgrebe, D. 1991. A survey of decision tree classifier methodology.

IEEE transactions on systems, man, and cybernetics, 21(3), pp. 660-674.

Saravanan, N., and Gayathri, V. 2017, November. Classification of dengue dataset using

J48 algorithm and ant colony based AJ48 algorithm. In Inventive Computing and

Informatics (ICICI), International Conference on (pp. 1062-1067). IEEE.

Sathyaraj, R. and Prabu, S., 2015. An approach for software fault prediction to measure the

quality of different prediction methodologies using software metrics. Indian Journal of

Science and Technology, 8(35).

Satyanarayana, N., Ramadevi, Y., and Chari, K. K. 2018, January. High blood pressure

prediction based on AAA using J48 classifier. In Signal Processing And Communication

Engineering Systems (SPACES), 2018 Conference on (pp. 121-126). IEEE.

Scanniello, G., Gravino, C., Marcus, A. and Menzies, T., 2013, November. Class level fault

prediction using software clustering. In Proceedings of the 28th IEEE/ACM International

Conference on Automated Software Engineering (pp. 640-645). IEEE Press.

SERG-Delft. 2018. SERG-Delft/jpacman-framework. Retrieved from

https://github.com/SERG-Delft/jpacman-framework.

https://github.com/SERG-Delft/jpacman-framework

www.manaraa.com

68

Singh, Y., Kaur, A. and Malhotra, R., 2009. Comparative analysis of regression and

machine learning methods for predicting fault proneness models. International journal of

computer applications in technology, 35(2-4), pp.183-193.

Singh, Y., Kaur, A. and Malhotra, R., 2009, July. Software fault proneness prediction using

support vector machines. In Proceedings of the world congress on engineering (Vol. 1, pp.

1-3).

Singhal, S., and Jena, M. 2013. A study on WEKA tool for data preprocessing,

classification and clustering. International Journal of Innovative technology and exploring

engineering (IJItee), 2(6), pp. 250-253.

Suresh, Y., Kumar, L. and Rath, S.K., 2014. Statistical and machine learning methods for

software fault prediction using CK metric suite: a comparative analysis. ISRN Software

Engineering, 2014.

Team, A. C. 2018. Apache Commons – Apache Commons. Retrieved from

http://commons.apache.org/.

Yu, P., Systa, T. and Muller, H., 2002. Predicting fault-proneness using OO metrics. An

industrial case study. In Software Maintenance and Reengineering, 2002. Proceedings.

Sixth European Conference on (pp. 99-107). IEEE.

Zhang, Y., Song, W., Li, S., Fu, L., and Li, S. 2018. Risk Detection of Stroke using a

Feature Selection and Classification Method. IEEE Access.

http://commons.apache.org/

