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 الملخص
 

 ظمن في ستيرماج. التحقق من تنبؤ البرمجيات بالتعرض للخطأ على مستوى الوحدة البرمجية. سماح عبدالعزيز، الذيابات

. دب أبو الهدى، أ.د. بلا: ون. )المشرف2018 جامعةاليرموك، الحاسوبية، المعلومات نظم قسم رسالة، الحاسوبية، المعلومات

 (محمد عكور

 

 د أخطاءلإظهار احتمال وجوالوحدات البرمجية يركز التنبؤ بأخطاء البرمجيات على فحص واختبار الملفات و

بعد  ت الخاطئة.البياناوالسمات الداخلية موجودة أم لا، ذلك يؤدي إلى بناء نموذج للتنبؤ يعتمد على مقاييس الجودة باستخدام 

لى كز الجهد عدما يرالتنبؤ بالوحدة البرمجية الخاطئة، يمكن استخدام عملية التصحيح لفحص واختبار الوحدة البرمجية. و عن

ما ال ، مل فعها بشكالوحدات البرمجية التي تحتوي على أخطاء ، ذلك يمكن أن يساعد في الاستفادة من موارد البرامج وإدارت

 سيعزز مرحلة الصيانة لتكون سهلة.

 Naïve في هذه الأطروحة ، يتم استخدام خمسة خوارزميات تعلم الآلة للتنبؤ بالوحدات البرمجية الخاطئة وهي

Bays  وRandom Forest, J48, Decision Table , SVM هذه الخوارزميات تم تطبيقها على قواعد بيانات جافا .

والصغيرة( التي تم معالجتها مسبقا للحصول على نتائج أفضل. المقارنات التي تمت بين مجموعات البيانات )المقاييس الكبيرة 

ً لخوارزميات التعلم الآلي تشير الى ان هناك اختلاف في النتائج. بعد مقارنة النتيجة في منهجنا  غير المعالجة و المعالجة تبعا

ى معدل الخطأ، من الواضح أن النتيجة في نهجنا المتطور كانت أفضل من اعتماداً عل (Hata, et al, 2012) المطور مع

  Random Forest. نتائجهم باستخدام

كانت  ،يرة الحجمنات كبلمجموعة البيا استناداً إلى المقارنة بين مجموعات البيانات التي سبق معالجتها وغير المعالجة

عالجة ة وغير الملمعالجامعالجة. و بالاستناد إلى المقارنة بين البيانات البيانات المعالجة أفضل قليلاً من البيانات غير ال

تائج حصول على ننات لللمجموعات البيانات صغيرة الحجم ، فمن الواضح أنه لا يوجد أي تأثير للمعالجة المسبقة لمجموعة البيا

 .أفضل

والترتيب Random Forest خطأ هيلدقة ومعدل الل بناء على نتائج مقاييس التقييم توضح أن أفضل خوارزمية

  Naïve Bays. و الأخير هو,Random Forest , Decision Table   J48 ,  SVM التنازلي للخوارزميات هو
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Abstract 
 

Aldiabat, Samah Abedalaziz. Investigation for Software Fault Proneness Prediction at Method 

Level. Master of Computer Information Systems, Thesis, Department of Computer Information 

Systems, Yarmouk University, 2018. (Supervisors:  Prof. Dr. Bilal A. Abul-Huda, Dr. Mohammed 

A. Akour) 
 

 

Software fault prediction is focusing on examining and testing files, packaging, classes or 

methods to show the probability of existing faults or not. That led to build a predictive model 

based on quality metrics by using internal attributes and faulty data. After predicting the faulty 

method, the correction process can be used to inspect and test the method. When effort focuses 

on the methods that have faults, it can help in utilizing and managing the software resources 

effectively and that will enhance the maintenance phase to be easy. 

In this thesis, five machine learning algorithms are used which are, Naïve Bays, Random 

Forest, J48, Decision Table and SVM to predict the faulty methods. These algorithms applied on 

Java Datasets (Large and Small scales) contains object oriented metrics (B, CALL, CLOC, 

COM_RAT, D, E, EXEC, EXP, IV(G), LOC, N, n, NCLOC, NP, STAT, QCP_CRCT, QCP_MAINT, 

QCP_RLBTY, TCOM_RAT, V,V(G)), that normalized and preprocessed to gain better results. 

Comparisons done between preprocessed and unprocessed datasets depending on the machine 

learning algorithms and there was a variation in the results. The result in our developed approach 

is compared with (Hata, et al, 2012) depending on error rate. It is obvious that the result in our 

developed approach using Random Forest is better than their results.  

Based on comparison between preprocessed and unprocessed datasets for the large scale 

as, it is obvious that the processed data is a little bit better than the unprocessed data for the 

large scale datasets. While based on comparison between processed and unprocessed data for 
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the small scale datasets as, it is obvious that there is no effect of preprocessing the dataset to get 

better results. 

The evaluation measures results show that for the accuracy and error rate the best 

algorithm is Random Forest and the descending order for the algorithms is: Random Forest, 

Decision Table, J48, SVM and the last one is Naïve Bays. While for the precision the descending 

order is Naïve Bays, Random Forest, J48, SVM and Decision Table. For the recall the order is 

Decision Table, SVM, J48, Naïve Bays and Random Forest. The false-positive order is Decision 

Table, SVM, J48, Random Forest and Naïve Bays. F-measure order is Random Forest, SVM, 

Decision Table, J48 and Naïve Bays. Finally, the specificity and True-negative order is Naïve 

Bays, Random Forest, J48, Decision Table and SVM. 

 

 

Keywords: Fault prediction, Fault Proneness, machine learning, Object Oriented Metric
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Chapter One 
 

1. Introduction: 
 

1.1 General Overview 
 

Software systems significant role in the applications that have critical mission, 

demands working in a reliable way with their requirements. A comprehensive assessment 

for these software systems using manual testing or automatic techniques is needed for 

assuring the software quality. To verify the areas that have problems in the system under 

the development,  predicting the modules that are fault prone by software quality models is 

needed to help the experts. Therefore, by enforcing the software quality models at early 

stages of the software development life cycle might help in producing reliable software by 

efficiently removing faults.  

Software testing is the procedure of executing the program with the purpose of 

detecting errors and making sure the software does what it supposes to do. Typically, 

programs include large number of errors. One of the reasons for continuing these errors 

over the software development life cycle is the restrictions of the testing resources, such as 

the time and cost. To produce software system with high reliability, high quality and low 

cost, the resources should be used in an effective way through concentrating the effort of 

testing on the system parts that contains more errors (Banitaan, et al, 2013). 

Software quality can be measured according to different attributes; one of these 

attributes is the fault proneness. Fault proneness is defined as “the probability of fault 

detection in a class”. This means that fault proneness is the probability to be fault prone. 
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The importance of measuring the software fault proneness can be clear in minimize the cost 

and improve the overall testing process effectiveness. Fault proneness of the software 

cannot be measured directly, It can be estimated by using the software metrics to provide 

descriptions of the attributes of the program, and that descriptions are quantitative.  

(Malhotra and Jain, 2012). 

By taking into account software size and complexity, producing software with high 

quality without faults is a complex task and big challenge to achieve. The most costly and 

challenging phase in the system development life cycle is the maintenance phase. To deal 

with this challenge, we must identify which parts of source code that perhaps include faults 

and need to be changed. Software fault prediction is focusing on examining and testing 

files, packaging, classes or methods to show the probability of existing faults or not. The 

solution is to build a predictive model based on quality metrics by using internal attributes 

and faulty data that collected previously, the most repeatedly dependent variable is the fault 

proneness. After predicting the faulty class, the correction processcan be used to inspect 

and test the class. When effort focuses on the classes that have faults, it can help in utilizing 

and managing the software resources effectively and that will enhance the maintenance 

phase to be easier than before (Alenezi, et al, 2014). 

There are different approaches for prediction in the area of software engineering 

like, correction cost prediction, test effort prediction, reusability prediction, fault prediction, 

quality prediction, security prediction and effort prediction. But most of these approaches 

need more research to reach the model that is robust. The most common research area in 

the prediction approach is the software fault prediction (Catal, 2011). 
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Producing a system with high robustness, reliability, efficiency and with no errors is 

critical. So fault prediction techniques must use in an efficient and accurate way.The 

purpose of the software fault prediction is categorizing the modules that under the test into 

error free or error prone modules. This categorization of the modules is a major step in the 

early phases of the software development life cycle especially in the testing phase, as 

exhaustive testing is impossible and costly. Machine learning techniques are used widely 

for building predictive models (Akour, et al, 2017). 

Accurate prediction model of the faulty software depends on the availability of the 

software metrics information; also it depends on the quality metrics. So the main part of the 

process of model building is selecting the subset of software metrics and that will save the 

time in collecting and managing them. And select the appropriate classifier that known as 

the fault predictors from the machine learning techniques (Alenezi, et al, 2014). 

Most researches investigate the fault prediction field, especially on the class level 

and used metrics and machine learning techniques to build the predictive model. There is a 

noticeable lack of research that are interests in the fault prediction on the method level and 

these researches not using all the techniques that used in the class level. We assume that 

addressing the fault proneness at the method level might be providing more promises. Since 

the method level is better than the class level, because of its effectiveness in the quality 

assurance. File level prediction is more efficient than package level prediction. So, method 

level prediction is more efficient than file level and package level prediction, and that 

means finding more bugs through the activities of quality assurance in the method level 

prediction when same amount of lines of code investigated is possible (Hata, et al, 2012). 

We will investigate if the fault proneness prediction on the method level will be efficient 
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according to the importance of the fine grained level and its effectiveness in discovering 

more faults because of the more details in the method level rather than the class level. 

The remainder of this thesis is organized as follows; background, problem statement. The 

literature review was in chapter two. Chapter three presents our methodology, while the 

experiments discussed in chapter four. In chapter five the results discussion was presented 

and finally the conclusion and future work were in chapter six. 

 

1.2 Background 
 

Software dependency and complexity cause in increasing the need to deliver 

maintainable software, with high quality and low cost. Therefore, software fault prediction 

is considered as an important activity for improving the quality of software and reducing 

the effort of maintenance before deploying the system. To build a predictive model, 

metrics, predictors, faulty data is needed. Software fault prediction can categorize the 

module or the class to be either ‘not fault-prone’, or ‘fault-prone’. Techniques of machine 

learning can be used in software fault proneness prediction (Malhotra, 2015, Rathore and 

Kumar, 2017). 

There are different approaches for prediction in software engineering like, 

correction cost prediction, test effort prediction, reusability prediction, fault prediction, 

quality prediction, security prediction and effort prediction. But most of these approaches 

need more research to reach the model that is robust. The fault data in the module 

expressed by 1, else 0 when the error is notified through the test of the system or the field. 

The software metrics are utilized as the independent variables and the fault data is utilized 

as the dependent data in modeling prediction. 
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Thus, the need of version control system like Subversion for storing the source 

code, a change management system like Bugzilla for recording the faults and the tool that 

collecting the product metrics from the version control system. One of the techniques for 

software fault prediction is applying X-means method for clustering modules and 

identifying the top number of cluster. After that, checking the mean vector of every cluster 

against vector of metrics thresholds is necessary. So if the mean vector has one metric at 

least higher than the threshold value of the same metric, the cluster is predicted as “fault 

prone”. Another clustering methods used are the K-means and fuzzy. Experiments show 

that by using the X-means clustering, the software fault prediction that is not acting under 

supervision can produce efficient results and be completely automated. By using the 

algorithms of supervised classification, the model of prediction is built with the prior labels 

of fault and prior software metrics in machine learning (Catal, 2011). 

One of the machine learning techniques is called ensemble learning which is 

combines more than one algorithm of machine learning and trained them for producing 

output better than the output of anyone of them separately. There are two types of ensemble 

machine learning techniques, heterogeneous and homogenous ensembles. For the 

heterogeneous ensemble, it develops each type of the base learner in different way by using 

several techniques of Machine learning. By merging each prediction of the base learner 

together, the dataset and the prediction are created. While for the homogeneous ensemble, it 

uses different subsets of the whole training dataset for each base learner. To produce 

satisfied conditions and to reach the suitable ensemble, there are two vital and primary 

conditions; which are the accuracy and diversity (Akour, et al, 2017). 
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The most repeatedly dependent variable is the fault proneness. When predict the 

fault proneness classes, it can focus on the chance of verification and validation in finding 

the faults. After predicting the faulty class, the actions of correction can be used to inspect 

and test the class. When the effort focuses on the classes that have faults, it can help in 

utilizing and managing the software resources effectively and that will enhance the 

maintenance phase to be easier than before (Alenezi, et al, 2014). 

For estimating the fault proneness, model predicted using the QMOOD (Quality 

Model Object Oriented Design) and OOCK (Object Oriented Chidamber and Kemerer) 

metrics by applying six methods of machine learning and one method statistic. Different 

attributes can measure the software quality like, testing effort, fault proneness and testing 

effort. Machine learning is used in several domains such as, bioinformatics, retail 

companies, and financial institutions. The methods of machine learning used for predicting 

the accuracy of the predicted model (genetic programming, multilayer perceptron, support 

vector machine, adaboost, bagging and random forest).Apache POI dataset was used for the 

applications that extract text like, content management systems, web spiders and index 

builders. The techniques of machine learning used for predicting the accuracy of models 

when used more than one metric together. Decision trees have been used to predict the fault 

proneness, while the artificial neural networks used in predicting value of fault proneness 

continuous measure. As for the support vector machine, it is used to perform class 

classification to non-fault prone and fault prone. The other techniques of machine learning 

used for predicting the classes with faults like, boosting, random forest and bagging. These 

techniques can be used in WEKA tool (Malhotra, and Jain, 2012). 
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1.3 Problem Statement 
 

1.3.1 Research Purpose 
 

To the best of our knowledge, the work presented in this thesis trying to be a new 

contribution in the field of method level addressing for prediction purposes. This thesis 

tried to predict the fault proneness on the method level using object oriented metrics (B, 

CALL, CLOC, COM_RAT, D, E, EXEC, EXP, IV(G), LOC, N, n, NCLOC, NP, STAT, 

TCOM_RAT, QCP_CRCT, QCP_MAINT, QCP_RLBTY, V,V(G)), shown in table 1 

below, as features applied on JAVA datasets and using several machine learning techniques 

to build the predictive model such as Decision Table, SVM, Naïve Bays, J48 and Random 

Forest. 

These metrics were chosen on the base of the experiment and information gain 

using WEKA tool which is a good measure for deciding the relevance attributes with 

maximal information and most effective features and removes the unrelated features that 

haven’t any effect; after running the 44 extracted metrics from Intellij IDEA tool on WEKA 

tool and see how the variation and the results were, we decided to choose the 18 metrics 

that have an effective results.   

 Also, this thesis tried to compare between these techniques to determine the best 

technique for software fault proneness prediction on the method level. As another aim, 

planning to compare between the performance of the historical metrics and the object 

oriented metrics that applied on different datasets (JAVA Open Source Projects) to 

conclude the most appropriate metrics for the software fault proneness prediction on the 
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method level through measuring the performance measures such as accuracy, error rate, 

precision, recall, F-measure, False positive, True Negative and Specificity.  

Table 1: Object Oriented Metrics used (jetbrains.com/idea, 2018) 

# Metrics Description 

1 B 

Calculates the Halstead Bugs metric for a method. The Halstead 

Bugs is intended as an estimate of the number of bugs in a method. 

In practice, it has usually been found to underestimate. (B=V/3000) 

2 CALL 
Calculates the total number of method call expressions in each 

method. 

3 CLOC 
Calculates the number of lines of comments in each method. 

Whitespace is not counted for purposes of this metric. 

4 COM_RAT 
Calculates the ratio of lines of comments to total lines of code in 

each method. Whitespace is not counted for purposes of this metric. 

5 D 

Calculates the Halstead Difficulty metric for a method. The Halstead 

Difficulty is intended to correspond to the level of difficulty of 

understanding a method. (D=(n1/2)*(N2*n2)) 

6 E 

 Calculates the Halstead Effort metric for a method. The Halstead 

Effort is intended to correspond to the level of effort necessary to 

understand a method. (E=D*V) 

7 EXEC 

Calculates the total number of executable statements in each 

method. Executable statements are defined to be any non-control 

statement. 

8 EXP Calculates the total number of expressions in each method. 

9 iv(G) 

Calculates the design complexity of a method. The design 

complexity is related to how interlinked a methods control flow is 

with calls to other methods. Design complexity ranges from 1 to 

v(G), the cyclomatic complexity of the method.  

10 LOC 
 Calculates the number of lines of code in each method. Comments 

are counted for purposes of this metric, but whitespace is not. 

11 N 

Calculates the Halstead Length metric for a method. The Halstead 

length of a method is defined as the total number of operators and 

operands in a method. (N=N1+N2) 

12 n  

Calculates the Halstead Vocabulary metric for a method. The 

Halstead Vocabulary of a method is defined as the total number of 

distinct operators and operands in a method. (n=n1+n2) 

13 NCLOC 
Calculates the number of non-comment lines of code in each 

method. Comment and empty lines are not counted by this metric. 

14 NP  Calculates the number of parameters for each method. 
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15 STAT Calculates the total number of statements in each method.  

16 TCOM_RAT 

Calculates the ratio of lines of comments to total lines of source 

code in each method. Whitespace is not counted for purposes of this 

metric. 

17 QCP_CRCT 

Calculates the Quality Criteria Profile (Correctness) of a method. 

This is a synthetic metric, designed to estimate the difficulty of 

determining the correctness of given method. Lower scores are 

better. Quality Criteria Profile (Correctness) is defined as: 

QCP_CRCT = D + CONTROL + EXECUTABLE + (2*V(g)) 

18 QCP_MAINT 

Calculates the Quality Criteria Profile (Maintainability) of a method. 

This is a synthetic metric, designed to estimate the difficulty of 

maintenance for a given method. Lower scores are better. Quality 

Criteria Profile (Maintainability) is defined as: QCP_MAINT = 

(3*N) + EXEC + CONTROL + NEST + (2*V(g)) + BRANCH 

19 QCP_RLBTY 

Calculates the Quality Criteria Profile (Reliability) of a method. 

This is a synthetic metric, designed to estimate the reliability of 

given method. Lower scores are better. Quality Criteria Profile 

(Correctness) is defined as: QCP_RLBTY = N + (2*NEST) + 

(3*V(g)) + BRANCH + CONTROL + EXEC  

20 V 

Calculates the Halstead Volume metric for a method. The Halstead 

Volume is intended to correspond to the size of a method, and is 

defined as N * log(n), where N is the Halstead Length metric for the 

method and n is the Halstead Vocabulary metric. (V=N*log2n)  

21 V(G) 

Calculates the cyclomatic complexity of each non-abstract method. 

Cyclomatic complexity is a measure of the number of distinct 

execution paths through each method. This can also be considered as 

the minimal number of tests necessary to completely exercise a 

method's control flow. In practice, this is 1 + the number of if's, 

while's, for's, do's, switch cases, catches, conditional expressions, 

&&'s and ||'s in the method. 
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1.3.2 Research Motivation 
 

Many researchers interest in the software fault prediction to be the evolutionary 

research because of the importance of this topic in the software field. They build predictive 

models to predict the fault, defect or bug in the software for many reasons that useful for 

the software development life cycle. Most of the researches in this topic are examined on 

the class level and package level, but rarely found researches that examine the predictive 

models on the method level. Fault proneness prediction on the method level examined 

using some random forest technique combined with historical metrics (Hata, et al, 2012). 

But they didn’t examine more than one machine learning techniques combined with object 

oriented metrics. This thesis aims to get new good results by using the proposed technique. 

 

1.3.3 Research Questions 
 

 Do object oriented metrics predict the software fault proneness on the method level 

effectively? 

 Which category of metrics is the best for the fault proneness prediction on the 

method level? 

 To which extent the studied metrics accomplish better performance in terms of   

software fault proneness prediction? 

 Which fault proneness prediction techniques is the most suitable for the method 

level according the dataset applies on? 
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1.3.4 Research Significance 
 

This thesis desires to study the process of enhancing the fault proneness prediction 

on the method level and producing high quality and reliability software, and how that can 

leads to decrease the cost and time of the maintenance and complexity when predicting the 

fault prone methods at the early stage of the software development life cycle.  

 

1.3.5 Operational Definitions 
 

- Software defect: “an imperfection or deficiency in a software product where the 

product does not meet its requirement or specifications and needs to be either repaired 

or replaced” (Hong, 2017). 

- Software testing: is the procedure of executing the program with the purpose of 

detecting errors (Banitaan, et al, 2013). 

- Software fault proneness: “the probability of fault detection in a class” (Malhotra and 

Jain, 2012). 

- Software fault proneness prediction model: a model of classification the software 

design entities into two categories; fault prone and non-fault prone (Scanniello, et al, 

2013). 

- Random Forest: “ensemble classifier that manipulates its input features and uses 

decision trees as its base classifiers” (Hong, 2012). 

- Error Seeding: “is one of the white box testing which is very fascinating to researcher 

due to its approach to improve quality of software” (Gupta, 2016). 
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Chapter Two 
 

2.  Literature Review 

 

2.1 Software fault, bug and defect 
 

Software defect as defined in (Hong, 2017) is “an imperfection or deficiency in a 

software product where the product does not meet its requirement or specifications and 

needs to be either repaired or replaced”. The model of software fault prediction based on 

the metrics received the modules or the classes that quantified as a metric vector and 

predicted the fault information. Classifications that are binary have an importance in the 

researches which are determine if the module is fault prone or not. Defect attributes such as 

priority or severity is not considered in the modules that predict the absence or presence of 

the fault and that is a main problem in it. Defect severity is defined as “A measure of the 

impact a defect has on a system and its users”. The capability of predicting the modules that 

fault proneness in different categories of severity like low, high and not fault prone is much 

better than binary classifications, because not all the defects have same severity. Through 

predicting the critical problem in the system, the fault prediction model of the severity 

enables the resource allocation, quality testing and refactoring with lower cost.  

It is difficult to find bugs and fix them. Also, it is costly. And recently, there are 

several techniques and tools developed to find bugs automatically through analyzing the 

source code. (Rutar, et al, 2004) applied five different tools to find bugs, on various java 

programs especially Bandera, ESC/Java 2, FindBugs, JLint, and PMD, They used diversity 

of tools to be able to find warnings and bug reports. Their experimented results offer that 
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the tools didn't cross over another means that the tools almost detect non overlapping bugs. 

They discussed for each tool which techniques is based on, and they proposed the output of 

the tools that affected by each techniques. finally they proposed a meta tools that joins the 

output from the tools with each other’s, by take into account set of standards that many 

tools alert about such as particular lined of code, classes and methods. 

Models that have defects of course cause failures in the system, increase the cost of 

the maintenance and development and decrease the satisfaction of the customers. In order 

to improve quality assurance of the software and to help the developer to focus on the fault 

prone modules by applying the activities of the quality assurance on it, the fault prediction 

model is needed (Koru and Liu, 2005). 

 

 

2.2Software Fault Proneness prediction 
 

Different attributes can measure the software quality and one of them is the 

software fault proneness. Software fault proneness is considered as dependent variable and 

it defined as “the probability of fault detection in a class” (Malhotra and Jain, 2012). 

Testing, software quality and software fault proneness become more important in 

recent years regarding of improving efficiency of the process and minimizing the cost. 

Software fault proneness estimating in the model is significant to minimize the cost and to 

improve the efficiency of the process of software testing. We cannot measure the software 

fault proneness of the software directly. We can estimate it by using the software metrics to 

provide descriptions of the attributes of the program, and that descriptions are quantitative. 
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Most of the studies work on finding the suitable software metrics that used in predicting the 

fault proneness (Gondra, 2008, Singh, et al, 2009). 

According to (Hong, 2012) software fault proneness prediction model is a model of 

classification the software design entities into two categories; fault prone and non fault 

prone. The capability of predicting the modules that fault proneness in different categories 

of severity like low, high and not fault prone is much better than binary classifications, 

because not all the defects have same severity (Scanniello, et al, 2013). 

Software fault proneness may be predicted using machine learning methods by 

using one metric or a more than one metric together (Malhotra and Jain, 2012, Gondra, 

2008, Singh, et al, 2009, Rathore and Kumar, 2017). For example, decision table have been 

used to predict the fault proneness, while the artificial neural networks used in predicting 

value of fault proneness continuous measure (Malhotra and Jain, 2012). 

In (Gondra, 2008), the author used the support vector machine (SVM) technique to 

support the software fault proneness and classified the module to be with errors or with no 

errors.  In (Singh, et al, 2009), they found that SVM is achieving high accuracy in 

predicting the fault proneness of the software. They found the metrics that are related to 

fault proneness on the class level which are, SLOC (Source Lines of Codes), RFC 

(Response For Class) and CBO (Coupling Between Object). Also, they concluded that 

SVM model achieves the feasibility, adaptability to the object oriented systems and it is 

useful for the fault proneness prediction for the classes.  

Malhotra, et al, 2010 used the object oriented metrics to predict the fault proneness 

and used the SVM machine learning technique to build the model of fault proneness, 

assessing the software quality and to decide the feasibility and adaptability of this study. 
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They use the ROC (Receiver Operating Characteristic) evaluation measure to validate the 

SVM results and consider the accuracy of the predicted results from the ROC curve. Also, 

they considered the accuracy of fault proneness predicting using object oriented metrics and 

classified the faults according the severity into, low severity, medium severity and high 

severity. The dataset used is KC1 NASA dataset (C++ dataset) to evaluate their work. They 

found that SVM is predicting classes with faults with high accuracy. The object oriented 

metrics that are related to fault proneness are SLOC, RFC and CBO while DIT (Depth of 

Inheritence Tree)  and NOC (Nomber Of Children) are not related to fault proneness. The 

model that predicted with concern to the faults with high severity will has low accuracy. 

Therefore, the best result in fault proneness prediction is for the faults of medium severity. 

The appropriate metrics for the software fault proneness prediction are process 

metrics such as; size, complexity, design features, performance, and quality level and 

product metrics such as; Mean Time to Failure, Defect Density, Customer Problems and 

Customer Satisfaction (Luo, et al, 2010). 

The usefulness of the object oriented metrics for the software fault proneness was 

studied by (Yu, et al, 2002). They used a tool to collect the metrics of the software. They 

chose 5 attributes of object oriented software; reuse inheritance, cohesion, coupling, and 

size the software. And used 8 metrics; 2 of them are traditional (fan in and LOC) and the 

other 5 are Chidamber and Kemerer for object oriented metrics (CBO, DIT, NMC, RFC 

and NOC). 

Singh, et al, 2009, compared the performance of the ANN predictive model with the 

DT, SVM and LR predictive models. They used 12 systems in java as a dataset and object 

oriented metrics of Chidamber and Kemerer to find the relationship between these metrics 
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with the fault proneness prediction on the class level they concluded that the LOC and RFC 

are the best metrics to the fault proneness prediction. And NOC and DIT metrics are not 

useful in the fault proneness prediction.  Also, they concluded that DT, SVM and ANN are 

better than the LR model in the performance of predicting the fault proneness. 

Rathore and Kumar, 2017, proposed a recommendation system for helping the 

researchers to select the suitable technique of fault prediction while building the predictive 

model on the base of decision table concept. 

 

2.3Software Fault Prediction using Machine Learning Techniques 
 

Machine learning is used in several domains such as, bioinformatics, retail 

companies, and financial institutions. The methods of machine learning used for predicting 

the accuracy of the predicted model such as, genetic programming, multilayer perceptron, 

support vector machine, adaboost, bagging and random forest (Malhotra and Jain, 2012). 

A problem that attracted researchers which considered a challenge is fault 

prediction. Researchers proposed techniques of fault prediction and evaluated their 

performance using several datasets. They used the ensemble methods through applying 

three base learners which are the radial basis function neural network, artificial neural 

Network and logistic regression analysis. Also, they studied the fault prediction model 

applied on 45 projects on the class level and proposed a model for cost evaluation of the 

quality assurance of the software. They used the metrics of the source code as input for the 

fault prediction model. And these metrics are considered as independent variable, while the 

class category is considered as dependent variable. The dataset they used is from the 
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repository of PROMISE that contains 45 open source projects from real life. They proposed 

a framework to choose the suitable source code metrics that are effective in the fault 

prediction model. They concluded that the most relevant metrics are LCOM (Lack of 

cohesion of methods), WMC (Weighted Methods per Class), CBO and RFC (Kumar, et al, 

2017).  

Prediction is a significance process in the software development to avert the 

confusion in the process of the software, to enhance quality and to minimize the time 

complexity. The generality of the models of fault prediction is used the dataset from 

previous for predicting the faults. The prediction models is useful in improving the 

approach of the design through classify the alternative approach to the models of faults and 

to improve the quality. The process of software development can be identified whether if it 

in the right way or not through measuring the changes that happened. The quality is the 

major factor for the success of the software, on the basis of the accurate work of the 

software for the reason that was made. The authors used 4 classifiers (Lazy K-Star, 

Random forest, Naive Bayes and J48) and compared between them to make the prediction 

with high quality and by using the dataset of NASA and WEKA tool with the measures of 

F-measure, recall, precision, false positive rate and true positive rate to detect the accuracy 

in predictions. They found that the Naive Bayes was appropriate for the dataset which is 

small and the random forest was appropriate for the dataset which is large (Sathyaraj and 

Prabu, 2015). 

One technique of the machine learning techniques is called ensemble learning 

which is combines more than one algorithm of machine learning and trained them for 

producing output better than the output of anyof them separately. There are two types of 
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ensemble machine learning techniques, heterogeneous and homogenous ensembles. For the 

heterogeneous ensemble, it develops each type of the base learner in different way by using 

several techniques of Machine learning. By merging each prediction of the base learner 

together, the dataset and the prediction are created. While for the homogeneous ensemble, it 

uses different subsets of the whole training dataset for each base learner. To produce 

satisfied conditions and to reach the suitable ensemble, there are two vital and primary 

conditions; which are the accuracy and diversity. The authors compared between 3 of 

measures of ensembles; boosting, bagging and stacking and evaluated the performance of 

them with 11 base learners for the software defects prediction on the module level using the 

NASA dataset. They found that boosting improves the performance better than the bagging 

method in the accuracy. While for the stacking, the random forest is the best classifier for 

improving the software defect prediction (Akour, et al, 2017). 

For selecting the software metrics subsets that help in predicting the faulty classes, 

(Catal, 2011)chose eight OSS (open source software) systems that have twenty internal 

attributes and using the feature selection technique, then compared several classifications 

since the classification is the most popular technique in machine learning. It is known as 

“supervised statistical learning”. It trains the model using the data that class defined in 

advance. The data is useful for the training of learning algorithm, and that causes of 

creating the model that used in classifying the testing instances when the class labels value 

is unknown. He compared several classifiers; which are known as the fault predictors with 

high performance. The author compared between the classifiers based on two measures; 

AUC (Area under receiver) and F-measure (precision and recall). The most effective 

predictor for the accuracy in the field of software fault prediction is the AUC (Catal, 2011). 
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Many methods were proposed for developing the predictive models of the software 

fault proneness, the statistical techniques and machine learning and others. Machine 

learning techniques are used to find the most appropriate metrics that predicts with the 

errors. One of the machine learning techniques they used is the ANN and they used 

historical data which is NASA dataset and applied the sensitivity analysis to determine 

which software metric is important in the software fault proneness. Then they used the 

SVM technique to support the software fault proneness and classified the module to be with 

errors or with no errors. After the comparative experiment they found that the effectiveness 

of the SVM is better than the ANN in the classification mission. The concentration of 

machine learning field on the research of the algorithms which improve the performance of 

them at the task they do by their experience. Over fitting problem is when the training data 

has no errors and the function doesn’t generate the values correct for the data which unseen 

previously. While, the generalization is when the function may generate the values correct 

for the data which is new and not in the training data. And the hardest problem is having a 

good generalization function. When the function complexity increases, the training errors 

decrease. But when the generalization error increases, the complexity increases. The 

technique that reduces the over fitting problem is the cross validation. Cross validation is 

the set of disjoint from training data that used for the selection of a model. The useful of 

using machine learning is to select the most appropriate software metrics that indicates the 

software fault proneness by using the sensitivity analysis and to implement that model of 

the fault proneness prediction on the base of these metrics (Gondra, 2008). 

Software classifications used metrics of complexity as input vectors and used 

algorithms applied on sufficient training data on the base of statistical methods and 
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machine learning like case-based reasoning, support vector machines, logistic regression, 

discriminated analysis, fuzzy classification, Bayesian models, decision table, neural 

networks and genetic programming to build the predictive model. Based on researches used 

NASA data set, Random Forest technique is better in performance of prediction comparing 

with SVM and MLP. Random Forest is defined by(Hong, 2012) as “ensemble classifier that 

manipulates its input features and uses decision table as its base classifiers”. Ensemble 

techniques are techniques for classification to improve the accuracy of the classification 

through aggregating multiple classifiers predictions. They constructed the random forest 

model by using the WEKA tool which is a machine learning tool and used a dataset from 

previous research. 

Software fault proneness is an example of the software quality attributes and 

predicted by using software metrics. Machine learning is used to predict the fault proneness 

probability. They evaluated the performance of the support vector machine technique by 

using one dataset of NASA which is KC1 and found the relation between the object 

oriented metrics and the models of fault proneness. Also, they evaluated the predicted 

model performance by using AUC, sensitivity, precision, specificity and completeness. 

They found that SVM is achieving high accuracy in predicting the fault proneness of the 

software.  Support vector machine is a tool used for classifying the data. It used in a 

successful way in different applications such as, text classification, face identification, 

identification of organisms, Chinese character classification and pattern recognition. SVM 

separates the dataset to 2 categories. They found the metrics that are related to fault 

proneness which are, SLOC, RFC and CBO. Also, they found that SVM model achieves 
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the feasibility, adaptability to the object oriented systems and it is useful for the fault 

proneness prediction for the classes (Singh, et al, 2009). 

 

 

2.4 Software Fault Prediction Using Metrics 
 

The appropriate metrics for the software fault proneness prediction are process and 

product metrics. The datasets took from MDP repositories (NASA Metrics Data) which 

contain 11 datasets. To produce more useful predictive model, metrics and attributes must 

mined to be more useful for the domain that applied on it and to avoid the metrics or 

attributes that are not useful or make noise in the analysis. They used 9 techniques of data 

reduction, and then used Naïve bays as a data miner and classifier to build the predictive 

model for evaluating the methods of metrics reduction. For feature selection, they used CFS 

as filter method and J48 as wrapper method. And to select the subset, they used the genetic 

algorithm and best first. PCA and DWT are two effective methods for feature extraction 

used in their study (Luo, et al, 2010). 

Singh, et al, 2009, compared the performance of the ANN predictive model with the 

DT, SVM and LR predictive models. They used 12 systems in java as a dataset and object 

oriented metrics of Chidamber and Kemerer to find the relationship between these metrics 

with the fault proneness prediction on the class level they concluded that the LOC and RFC 

are the best metrics to the fault proneness prediction. And NOC and DIT metrics are not 

useful in the fault proneness prediction.  Also, they concluded that DT, SVM and ANN are 

better than the LR model in the performance of predicting the fault proneness.  
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Sureshm, et al, 2014, assessed the impact of the Chidamber and Kemerer metrics on 

predicting the software fault prediction for the open source systems. They used machine 

learning techniques for predicting faults (radial basis function network, functional link 

artificial neural network and artificial neural Network) and classifying faults (probabilistic 

neural network). The dataset used contains of 965 classes. 5 parameters used to measure 

performance used (statistical analysis, precision, correctness, completeness, accuracy and 

𝑅2 Statistic). They used MATLAB coding to support machine learning and statistical 

methods for fault prediction. They concluded that WMC is the best useful from the 6 CK 

metrics for fault prediction. 

Boucher and Badri, 2016, focused on the effect of code metrics threshold, because 

the models that based on it will be understood and implemented by the programmers or 

software experts. Also, it can provide them with the reason of why the class is fault prone. 

Threshold cannot be used for all projects and not all thresholds are good for fault 

prediction. In their study, they compared two of the thresholds algorithms and considered 

them in predicting faults. They used 5 different systems as datasets (Eclipse JDT Core, 

JEdit, KC1, Apache IVY and Apache ANT) and Bayes Network as machine learning 

classifier for fault prediction to give good results. Also, they assess the validity of the 

method of Alves Rankings and ROC in software fault prediction and found that the method 

of Alves Rankings gives good results and considered them as threshold techniques that do a 

good job. 

Jureczko and Spinellis, 2010, take into account object oriented metrics to build 

defect prediction models. the models evaluated on five application and eleven open source 

projects, a model built according to the data collected from version i of a project has been 
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estimated by predicting the bugs in version i+1. Experimented results displayed that after 

applying regression models with determined class size factor they can find 80% of bugs in 

10.56% to 54.93% (μ=36.086; σ=10.435) of the classes. They found that WMC and LOC 

are considered as factors for the class size in the models of fault detection. 

Zimmermann and Nagappan, 2008, proposed a low level graph to enhance network 

analysis which these graph may be used to allocate resources effectively and enable the 

manager to recognize central program units that are more helpful to determine bugs. They 

evaluated their study on Windows Server 2003, they reached that the recall for models 

structured from complexity metrics is less 10% points than for models structured from 

network measures. also, network measures  recognized  that 60% of the binaries that  

developers of windows rated as critical , more than identified by complexity metrics. 
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Chapter Three 

3. Research Methodology 
 

3.1 Overall Research Design 
 

The proposed methodology shown in figure 1 that used in this thesis is explained in 

this chapter with details about all phases. Our proposed technique is fault proneness 

prediction model that used the Random Forest, J48, SVM, Decision Table and Naïve Bays 

machine algorithm tested with the object oriented metrics to get the best results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1: Research Methodology 

Comparing between selective machine learning 

techniques  

Comparing between OO metrics and 

historical metrics 

Applying OO metrics and machine learning 

techniques on Java Dataset 

Producing faulty & non-faulty methods using 

manual error seeding (Creating Dataset 2) 

Collecting JAVA codes  

Producing OO metrics on the method level 

with JAVA dataset using Intellij IDEA tool 

(Creating Dataset 1) 
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3.2 Research Phases 
 

3.2.1 Phase one: Collecting Java codes 

 

Fifteen Java codes have been collected on the base of predicting faults on the 

method level using machine learning algorithms. Three codes of them (Ant, Cassandra and 

Wicket) are collected from (Hata, et al, 2011).  The codes contain faults caused by 

manually mutation. Figure 2 shows an example of java source code.  

 

 

Figure 2: Java source code 
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Apache Ant is “a Java library and command-line tool whose mission is to drive 

processes described in build files as targets and extension points dependent upon each 

other. The main known usage of Ant is the build of Java applications. Ant supplies a 

number of built-in tasks allowing to compile, assemble, test and run Java applications” 

(ant.apache.org, 2018). 

Apache Cassandra, “a top level Apache project born at Facebook and built 

on Amazon’s Dynamo and Google’s BigTable, is a distributed database for managing large 

amounts of structured data across many commodity servers, while providing highly 

available service and no single point of failure. Apache Cassandra offers capabilities that 

relational databases and other NoSQL databases simply cannot match such as: continuous 

availability, linear scale performance, operational simplicity and easy data distribution 

across multiple data centers and cloud availability zones” (cassandra.apache.org, 2016). 

Wicket is “an open source Java component oriented web application framework that 

powers thousands of web applications and web sites for governments, stores, universities, 

cities, banks, email providers, and more. Wicket is one of the few survivors of the Java 

server side web framework wars of the mid 2000's. Wicket is an open source, component 

oriented, server side, Java web application framework” (wicket.apache.org, 2018). 

Apache Log4j is “a Java-based logging utility. It was originally written by 

CekiGülcü and is part of the Apache Logging Services project of the Apache Software 

Foundation. Log4j is one of several Java logging frameworks” 

(logging.apache.org/log4j/2.x, 2018). 

http://cassandra.apache.org/
http://en.wikipedia.org/wiki/Apache_Cassandra#History
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html
https://en.wikipedia.org/wiki/Java_platform
https://en.wikipedia.org/wiki/Computer_data_logging
https://en.wikipedia.org/w/index.php?title=Ceki_G%C3%BClc%C3%BC&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Apache_Logging_Services&action=edit&redlink=1
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Java_logging_frameworks
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The goal of MARC4J is “to provide an easy to use Application Programming 

Interface (API) for working with MARC and MARCXML in Java. MARC stands for 

MAchine Readable Cataloging and is a widely used exchange format for bibliographic 

data. MARCXML provides a loss-less conversion between MARC (MARC21 but also 

other formats like UNIMARC) and XML” (github.com/marc4j/marc4j, 2018). 

JTopas is “Java tokenizer and parser tools. The JTopas project provides a small, 

easy-to-use Java library for the common problem of parsing arbitrary text data. These data 

can come from a simple configuration file with a few comments, a HTML, XML or RTF 

stream, source code of various programming languages etc. Sometimes a text has to be 

parsed completely, sometimes only parts of it are important” (openhub.net/p/jtopas, 2018). 

PureMVC is “a lightweight framework for creating applications based upon the 

classic Model-View-Controller design meta-pattern. This is a Java port of the AS3 

reference implementation of the MultiCore Version. It supports modular programming 

through the use of Multiton Core actors instead of the Singletons used in the Standard 

Version” (puremvc.org, 2016). 

JPacman is “like game used for teaching software testing. It exposes students to the 

use of git, maven, JUnit, and mockito. Parts of the code are well tested, whereas others are 

left untested intentionally. As a student in software testing, you can extend the test suite, or 

use the framework to build extensions in a test-driven way. As a teacher, you can use the 

framework to create your own testing exercises” (github.com/SERG-Delft/jpacman-

framework, 2018). 

https://github.com/marc4j/marc4j
https://www.openhub.net/p/jtopas
http://en.wikipedia.org/wiki/Model-view-controller
https://github.com/PureMVC/puremvc-as3-multicore-framework/wiki
https://github.com/PureMVC/puremvc-as3-multicore-framework/wiki
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Multiton
http://en.wikipedia.org/wiki/Singleton_pattern
https://github.com/PureMVC/puremvc-java-standard-framework/wiki
https://github.com/PureMVC/puremvc-java-standard-framework/wiki
http://puremvc.org/
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Commons-Lang is the “standard Java libraries fail to provide enough methods for 

manipulation of its core classes. The Commons Lang Component provides these extra 

methods. The Commons Lang Component provides a host of helper utilities for the java. 

Lang API, notably String manipulation methods, basic numerical methods, object 

reflection, creation and serialization, and System properties. Additionally it contains an 

inheritable enum type, an exception structure that supports multiple types of nested-

Exceptions and a series of utilities dedicated to help with building methods, such as hash 

Code, to String and equals. With version of commons-lang 3.x, developers decided to 

change API and therefore created differently named artifact and jar files. This is the new 

version, while apache-commons-Lang is the compatibility package” 

(github.com/apache/commons-lang, 2018). 

Apache Commons is “an Apache project focused on all aspects of reusable Java 

components. The Apache Commons source code repositories are writable for all ASF 

committers. While Apache Commons is a Commit-Then-Review community, we would 

consider it polite and helpful for contributors to announce their intentions and plans on the 

dev mailing list before committing code. All contributors should read our contributing 

guidelines” (commons.apache.org, 2018).  

 

 

 

 

 

 

 

 

http://commons.apache.org/mail-lists.html
http://commons.apache.org/patches.html
http://commons.apache.org/patches.html
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3.2.2 Phase Two: Producing OO metrics on the method level with JAVA dataset using 

Intellij IDEA tool (Creating Dataset 1) 

 

To predict the software fault, several metrics such as historical and object oriented 

metrics used in different researches. The dataset used in researches may be private or 

public. Everyone can use the public dataset for a lot of applications. Unlike the private 

dataset that not everyone can access and in order to use these datasets, some procedures and 

issues should be followed. In this thesis, the datasets is created through collecting JAVA 

codes (large and small scales), and then import these codes into Intellij IDEA tool to extract 

the desired metrics (features) as shown in table 1 before.  

Figure 3 below shows the extracted results from Intellij IDEA tool that contains 

methods as rows and each method has 44 metrics (features).  

 

  

Figure 3: Intellij IDEA tool results (metrics) 
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3.2.3 Phase Three: Producing faulty & non-faulty methods using manual error 

seeding (Creating Dataset 2) 

 

The class label as shown in figure 6 was created by using the manual error seeding 

as shown in figure 2 and 3 below. Through changing in the source code of the methods, that 

will cause faults. Then the method in the dataset will be faulty. And the rest will be not 

faulty. After adding faults in the source code of the method, prediction of real faults on the 

base of seeded faults is done. 

 

Figure 4: Method before error seeding 

 

Figure 5: Method after error seeding 
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Figure 6: Class label 

 

3.2.4 Phase Four: Applying OO metrics and machine learning techniques on Java 

Dataset 

 

In this step, the object oriented metrics (B, CALL, CLOC, COM_RAT, D, E, EXEC, 

EXP, IV(G), LOC, N, n, NCLOC, NP, STAT, TCOM_RAT, , STAT, QCP_CRCT, QCP_MAINT, 

QCP_RLBTY,V,V(G)) are extracted from the java codes after the error seeding to get new 

values of features as shown in figure 7 below. 
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Figure 7: metrics after error seeding 

Then machine learning techniques are applied (Decision Table, J48, SVM, Naïve 

Bays and Random forest) on the dataset to build the predictive model on method level 

using python.  

 

3.2.5 Phase Five: Comparing between OO metrics and historical metrics 

 
In order to produce a better performance in predicting software fault proneness on 

the method level, the object oriented metrics that shown in table 1 before and historical 

metrics that shown in table 2 below, are being compared and decided which is the best set 

of metrics that improve the software quality and reduce the cost and time in determining the 

methods that contain faults.  
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Table 2: Historical Metrics Description (Hata, et al, 2012) 

# Metrics Description 

1 Code-Related Metrics 
Churned LOC / Total LOC, and Deleted 

LOC / Total LOC  

2 
Process-Related 

Metrics 

Changes, fixes, past bugs, Process 

complexity metrics 

3 
Organizational 

Metrics 

Number of developers, Structure of 

organization, Network metrics  

4 Geographical Metrics locations 

 

3.2.6 Phase Six: Comparing between machine learning techniques that used on the 

method level 

 

As an enhancement step in the software quality, several machine learning 

techniques Decision Table, SVM, Naïve Bays, J48 and Random forest are compared to 

determine which is the best machine learning techniques using the object oriented metrics 

on method level.  

3.2.6.1 Naïve Bays Algorithm: 

 

The Naïve Bayes classifier, presently experiencing a renaissance in machine 

learning, has long been a core technique in info retrieval. Number of the variations of Naïve 

Bayes models used for text retrieval and classification, specializing in the spacing 

assumptions created concerning word occurrences in documents (Lewis, D. D, 1998). 

Naïve Bays is commonly used as a baseline in text classification as a result of its 

quick and straight forward to implement. Its serve assumptions create such potency 

potential, however additionally adversely has an effect on the standard of its results. With 
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Naïve Bays classifiers lead to a fast algorithmic program that’s competitive with state of 

the-art text classification algorithms such as the Support Vector Machine. 

The Naïve Bayes model could be a heavily simplified Bayesian likelihood model. 

The Naïve Bayes classifier operates on a powerful independence assumption; this 

implies that the likelihood of 1attribute doesn't have an effect on the likelihood of the 

opposite. Given a series of attributes, the naïve Bayes classifier makes 

2n! Freelance assumptions. However, the results of the naïve Bayes classifier are often 

correct. 

 

 

3.2.6.2 J48 Algorithm: 

 

J48 is an expansion of ID3. The further features of J48 are show cause for missing 

values, attribute value ranges, decision trees pruning and derivation of rules. J48 is an open 

source Java implementation algorithm; it generates based on particular identity of data and 

it is objective is gradually generalized of a decision tree till it gains balance of accuracy and 

flexibility (Kaur, G., et al. 2014) 

J48 algorithm creates a decision tree based on the set of training instances. It depend 

on agreedy–top-down approach to the build the decision tree; it starts with building a root 

node, where the attribute is considered as the best classifies all the training instances is the 

same process is reiterated for the rest of the attributes recursively till all the instances have 

been  classified. In order to select the best instances, the data gained from each instances is 

calculated and the highest gained data is selected (Saravanan, N., et al. 2018). 
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All decision trees are most powerful technique in data processing implementation 

.A decision tree offers several benefits to data processing; it provides a 

straightforward understanding for the implementation It also proceed with flawed datasets 

or missing values and provides an improved prediction.J48 is capable of 

handling each Nominal and numeric data (Onik, A. et al. 2015). 

J48 scans for a surveillance list in an incremental technique. It finds one run at any 

moment. Each time it finds a decision it adds it to finish the rundown standards, unhand the 

cases secured by that administer from the preparation in order to find another lead for the 

rest of the preparation cases. Classification of dengue dataset using J48 algorithm and ant 

colony based AJ48 algorithm (Saravanan, N. et al, 2017). 

J48 based on the concept of information entropy and inspect the difference in 

entropy; this variation in entropy is called as normalized information. Attribute with highest 

normalized information is used to make decisions. J48 works very well with both discrete 

attributes and continuous attributes, also it gives an option for refining trees after creation 

(Bhargava, N. et al, 2017) 

 

 

3.2.6.3 Decision Table Algorithm: 

 

The decision Table classifier (DTC) is one in all the doable approaches 

to multistage decision making. The main idea of any multistage approach is to split up a 

complex decision into unique several decisions, to get a final best solution obtained 

(Safavian, S. et al, 1991). 
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The ability of Decision tables is evaluated as a hypothesis for supervised learning 

algorithms. Decision tables are one among the only hypothesis areas attainable, and 

frequently they are straightforward to know. Decision tables show that on artificial and 

real-world domains containing solely separate options, and a lot of datasets employed 

in machine learning either don't need these options, or that these options have few values 

(Kohavi, R. 1995).  

The advantages of decision table include robustness based on simultaneous usage of 

complementary recognition approaches and easy in dynamic adaptation. Decision tables are 

represented as ranking of a given class. They can be integrated by a many methods that 

reduce or the class set. These methods are acceptable regardless of the similarity between 

the individual classifiers; the effectivity and efficiency of the methods has been shown in 

many applications with real-world data. It is predicted that the decision tables are 

applicable to many problem domains.  

Each decision in the decision table is corresponded to a, relation, variable or 

predicate whose probability values are within an alternatives. Each action in the decision 

table is a procedure to be performed; one of the uses of decision tables is to detect 

conditions under a certain input factor (Ho, T. et al, 1994). 

One of the important approaches for decision-making and pattern recognition is a 

decision table, which is based on specific attribute selection. Attribute selection is a process 

of selecting the best subset of features by evaluating the performance of learning schemes 

depending on   different attribute subsets. 
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Decision tables are significantly supreme to other models in terms of reliability, 

accuracy and response time. Decision tables have not been used in many fields and its 

results improved its high performance in classification (Chen, C., et al, 2016). 

 

3.2.6.4 Random Forest Algorithm: 

 

Random Forest (RF) could be a powerful machine learning classifier 

that’s comparatively unknown in land remote sensing and has not been 

evaluated completely by the remote sensing community compared to a lot of typical pattern 

recognition techniques. Key benefits of RF include: their non-parametric nature; high 

classification accuracy; and capability to see variable importance. However, the split rules 

for classification are unknown, thus RF is thought of to be recording machine 

kind classifier. RF provides Associate in Nursing algorithmic rule for estimating missing 

values; and suppleness to perform many sorts of information analysis, as well as regression, 

classification, survival analysis, and unsupervised learning (Rodriguez-Galiano, V. et al, 

2012). 

Random Forests (RF), does not need reduction of the 

predictor before classification. To boot, RF yield variable importance measures for 

every candidate predictor. The effectiveness of RF variable is its importance measures 

in characteristic verity predictor among an oversized range of candidate predictors (Archer, 

K. et al, 2008). A Random Forest (RF) classifier is an associate ensemble classifier that 

produces multiple decision trees, employing a willy-nilly elite set of coaching samples and 

variables. This classifier has become in style inside the remote sensing community because 
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of the accuracy of its classifications.  RF classifier handles high knowledge spatiality and 

multi co linearity, being quick and insensitive to over fitting. It is, however, sensitive to the 

sampling style. RF classifier has been extensively exploited in numerous situations, as an 

example to cut back the amount of dimensions of hyper spectral knowledge (Belgiu, M et 

al, 2016). 

The random forest (RF) formula by Leo Breiman has become a 

customary information analysis tool in bioinformatics. It has shown glorious performance 

in settings wherever the quantity of variables is far larger than the quantity of 

observations, RF development on applications of bioinformatics and machine biology. 

Special attention is paid to sensible aspects like the choice of parameters, offered RF 

implementations, and vital pitfalls and biases of RF and its variable importance measures 

(Boulesteix, A. et al, 2012). 

 

3.2.6.5 SVM Algorithm: 

 

Support vector machine is one in all the foremost powerful learning algorithms 

and is employed for a good range of real-world applications. The potency of 

SVM formula and its performance principally depends on the kernel kind and its 

parameters. Moreover, the feature set choice that's accustomed train the SVM model is 

another necessary issue that encompasses a major influence on the classification accuracy. 

The feature set choice could be an important step in machine learning, especially for 

managing high dimensional dataset. Most of the previous 

researches handled these necessary factors individually (Aljarah, I., et al, 2018). 
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Support vector machine (SVM) is thought as a robust methodology 

for resolution issues in nonlinear classification, perform estimation and density estimation. 

SVM has been introduced at intervals the context of applied mathematics learning theory 

and structural risk minimization. Least squares support vector machine (LS-SVM) is 

reformulations from normal SVM that cause resolution linear Karush-Kuhn-Tucker (KKT) 

systems. LS-SVM is closely associated with regularization networks 

and Gaussian processes to emphasize and exploits primal-dual interpretations (Mustafa, M. 

et al, 2012). 

SVM is a theoretical machine learning classification technique that was adopted for 

structural risk minimization, authors show an empirical analysis that use SVM on the 

dataset with sound performance assessments. Therefore, authors have a tendency to utilize 

SVM for the benchmark classification rule to notice the accuracy rate of the feature 

subsets.SVM was 1st conferred at the Fifth Annual ACM Workshop 

on Computation Learning Theory (COLT). SVM preprocessing data patterns at a usually a 

lot of higher level than the initial feature subset. With associate acceptable non-linear 

mapping to the high-dimensional subset (Zhang, Y., et al, 2018). 

Support Vector Machines is  one of the techniques that are used for pattern 

classification and it is  widely used in many application areas, kernel parameters is a major 

factor that impacts accuracy classification. The objective of this research is to optimize the 

best parameters and feature subset without degrading the SVM (Huang, C. et al, 2016). 
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3.3 Datasets 
 

The datasets that used in this thesis is JAVA Open Source Projects as shown in 

table 3, (Malhotra and Jain, 2012, Hata, et al, 2012, Koru and Liu, 2005). The dataset 

consists of fourteen java projects; three of them were large scale and the remaining eleven 

were small scale. The overall extracted features were 44 features, but the number of 

features after processing was 21 features as shown in table 1. We exclude the features that 

make no difference on the results and have low variation that shown in table 6. 

Table 3: Details of Datasets 

Dataset  # of instances # of Features #of Features after Processing Scale 

Ant  14133 44 21 Large 

Cassandra 15319 44 21 Large 

Wicket 10310 44 21 Large 

Apa 309 44 21 Small 

apache-log4 4480 44 21 Large 

cinema 326 44 21 Small 

commons-codec 1321 44 21 Large 

common-lang 5511 44 21 Large 

iyad-marc4j 504 44 21 Small 

jpacman 218 44 21 Small 

jtopas1 433 44 21 Small 

jtopas2 498 44 21 Small 

puremvc 212 44 21 Small 

realstate 483 44 21 Small 

 

All projects of dataset are written in Java and have relatively object oriented 

properties and faults. The projects were chosen because they span varied application 

domains. Also, the open source projects are available for everyone in case of discovering 

anything that needs to change. 
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The datasets was normalized through rescaling attributes to the range -2 to 2 as 

shown in figure 4 (Singhal, S., & Jena, M. 2013). And preprocessed to gain better results by 

excluding the features in table 4 that have no effect on the dataset or have low variation as 

shown in figure 5 on the base of information gain.  

 

 

Figure 4: Normalized Dataset 
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Figure 5: Processed Dataset 

Table 4: Not used Object Oriented metrics (jetbrains.com/idea, 2018) 

# Metrics Description  

1 IF_NEST  Calculates the maximum depth of nesting of conditional (if) statements in 

each method. 

2 CDENS  
Calculates the ratio of control statements to all statements for each method. 

3 ev(G) 

Calculates the essential complexity of each non-abstract method. Essential 

complexity is a graph-theoretic measure of just how ill-structured a method's 

control flow is. Essential complexity ranges from 1 to v(G), the cyclomatic 

complexity of the method.  

4 
JLOC 

Calculates the number of lines of javadoc comments in each method. 

Whitespace is not counted for purposes of this metric.  

5 LOOP_NEST  Calculates the maximum depth of nesting of loop statements in each method. 

For, while, and do-while loops are counted.  

6 NEST  Calculates the maximum nesting depth of each method.  

7 TODO 
Calculates the number of TODO comments in each method. The format of 

TODO comments is defined in the Settings | Editor | TODO configuration 

panel.  

8 ASSERT Calculates the total number of assert statements in each method.  

9 BRANCH  
Calculates the total number of non-structured branch statements in each 

method. Non-structured branch statements include continue statements and 

branch statements outside of switch statements.  
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10 CONTROL  
Calculates the total number of control statements in each method. Control 

statements include if, for, while, do, try, break, continue, switch, and 

synchronized statements. 

11 CAUGHT  
Calculates the number of exception classes which are caught in each method.  

12 THROWS Calculates the number of exception classes each method declares in its 

"throws" clause. 

13 IMP 
 Calculates the number of concrete implementation of each abstract method.  

14 LOOP Calculates the total number of loop statements in each method. For, while, 

and do-while loops are counted. 

15 NULL Calculates the number of comparisons with null in each method.  

16 OVER  Calculates the number of times each non-abstract method is overridden. 

17 RETURN  
Calculates the total number of return points for each method. This includes 

any return statements as well as the implicit return at the end of constructors 

and methods returning void. 

18 CALLED  
Calculates the number places in the project at which each method may be 

called. This includes both calls to the method directly and calls to any method 

which it overrides.  

19 CALLEDp 
Calculates the number places in the product code of the project at which each 

method may be called. This includes both calls to the method directly and 

calls to any method which it overrides.  

20 CALLEDt 
Calculates the number places in the test code of the project at which each 

method may be called. This includes both calls to the method directly and 

calls to any method which it overrides.  

21 CAST 
Calculates the number of typecast or instance of expressions in each non-

abstract method. Excessive use of typecasting may be a sign of an ill-

structured program.  

22 NTP  Calculates the total number of type parameters of each method.  

23 RLOC 
Calculates ratio of lines of code for a method to the lines of code for it's 

containing class. Methods which have high relative lines of code values may 

indicate poor abstraction. 
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3.4 Research Tools and Applications 
 

In this thesis, the following tools used: 

Intellij Idea Tool: “is a special programming environment or integrated 

development environment (IDE) largely meant for Java. This environment is used 

especially for the development of programs. It is developed by JetBrains, which was 

formally called IntelliJ. It is available in two editions: the Community Edition which is 

licensed by Apache 2.0, and a commercial edition known as the Ultimate Edition. Both of 

them can be used for creating software which can be sold. What makes IntelliJ IDEA so 

different from its counterparts is its ease of use, flexibility and its solid design.” 

(jetbrains.com/idea, 2018). 

 

WEKA Tool: “WEKA is a workbench for machine learning that is designed to 

assist machine learning techniques to a diversity of real-world problems; it provides a 

working environment for the domain specialist, and it provides wealth interactive tools for 

data manipulation, result visualization, database linkage, and classification techniques.” 

(Holmes., et al., 1994). 

 

Python: “is developed under an OSI-approved open source license, making it freely 

usable and distributable, even for commercial use. Python's license is administered by the 

Python Software Foundation” (python.org/about, 2018) 

 

 

 

 

https://www.python.org/psf
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Chapter Four 

 

4. Experiment Setup 
 

In order to evaluate the proposed methodology, dataset on method level is created 

by using Intellij IDEA tool which extracts 44 features through importing java projects; we 

decided to use 21 features of them as shown in table 1 after preprocessing the data using 

WEKA 2017 and excluding the recent 23 feature as shown in table 4 before. After that 

class label is determined by using error seeding manually.  

Using python, datasets were normalized and machine learning algorithms are 

applied on them for software fault proneness prediction. To evaluate the results, evaluation 

measures are used in python.  

 

4.1 Evaluation Measures 
 

Six evaluation measures are used in this thesis, which are in the following table. 

Table 5: Evaluation Measures 

Evaluation 

Measure equation  

Accuracy TP+TN/(TN+FP+FN+TP) 

Error Rate FP+FN/(TN+FP+FN+TP) 

Precision TP/(TP+FP) 

Recall TP/(TP+FN) 

F-measure 2 (precision * recall)/(precision+recall) 

Specificity TN/(TN+FP) 

 

TP: true positive     TN: true negative     FP: false positive     FN: false negative  
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True Positive is the correctly predicted positive result, while the False Positive is the 

incorrectly predicted positive result. (Sathyaraj and Prabu, 2015). True Negative is the correctly 

predicted negative result, while the False Negative is the incorrectly predicted negative result 

(Malhotra, R., 2015). The evaluation measures used to evaluate the results gained from 

applying machine learning algorithms. 

 

 

4.2 Experiment 1: Extracting Metrics 

 

Intellij IDEA tool is used to extract the features from java projects. Metrics reloaded 

plug-in is installed within the tool to get metrics values (features), then java projects are 

imported into the tool through import project tab. To get metrics values, from analyze tab, 

calculate metrics is chosen. After that metrics profiles are named and determined to be on 

method level. And finally, the results are exported to CSV file. 

 

 

4.3 Experiment 2: Error Seeding and Mutation 

 

Mutation testing is one of the white box testing which is very fascinating to 

researcher due to its approach to improve quality of software. In this testing technique the 

software is tested to check the completeness of test suite which in turns ensures the quality 

of software. In Mutation testing simple bugs are introduced in the program to check the 

adequacy of the test suite. If test suite fails to identify the seeded faults then effective test 

cases are added to it to make it sufficiently strong. The objective of mutation testing is to 

find the flaws of test suite and then modifying suite to ensure its reliability in finding errors. 
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Mutation testing is based on two assumptions: the competent programmer 

hypothesis and the coupling effect. The competent programmer hypothesis supposes that 

although program is written by skilled programmer but it may not be error free. It may 

contain very small error that may deviate program output of program from the intended 

one. The coupling effect is based on fact that detection of small errors may cause the 

identification of big faults. That is simple errors in a program may be associated with 

complex error (Khan, T., 2015). 

Mutants are the key components of the mutation testing. A mutant is version of 

original program under test in which simple bug is added intuitively. Each mutant contains 

one simple error. The success of mutation testing depends on the number of mutants 

generated. On the basis of concept of mutant generation, Mutants can be of different types: 

Syntactical mutants: Mutants that are generated by making change in syntax of the 

program. There mutants can be detected by the compiler. For example: x=zy++. Minor 

mutants: Mutants that can be detected by any test case of the test suit. Equivalent mutant: 

These mutants are not detected by any test case because, these are not actually errors. These 

mutants produce the same output as that of original program. Value mutant: these mutants 

are generated by changing the value of constants and variable across the boundary values 

that is by replacing values to either too large or too small numbers. Condition Mutants: 

These mutants are generated to check the efficiency of test cases related to decision control 

statements accuracy. This can be done by replacing arithmetic, relational or logical 

operators in conditions. Statement mutants: In these mutants the statements are removed, 

replaced or duplicated to check the efficiency of test cases. From the point of testing the 
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value mutants, condition mutants and statement mutants are more useful as they help to 

find the inefficiency of test cases 

Mutation testing involves generation of mutants, testing and analyzing the 

outcomes. The whole process can be implemented by following the given steps:  

Step 1: Generation of mutants: For the program under test various mutants are 

generated. These mutants may be generated by introducing errors by replacing any 

operator, operand or statement of the program. 

Step 2: Testing: In second step the original program as well as the generated mutant 

is tested against all test cases of test suite. 

Step 3: Comparison of test outcome: Now the outcome of mutant program is tested 

with that of original program. If outcome is different, then mutant is killed that is it is not 

further tested with rest of the cases of test suite. It interprets that test suite is robust enough 

to handle the particular fault added in the killed mutant.  

Step 4: Updating of test suite: In the previous step if the outcomes of mutant and 

original programs is same for all the test cases of test suite it may further have two 

interpretations. One the mutant is equivalent mutant of the original program. An equivalent 

mutant is a version of original program that has different syntax but same semantic as that 

of original program. Two, the test suite is not adequate to handle that particular fault so 

more effective test case is added to test suite so that one particular fault can be identified by 

testing. These steps are repeated for all mutants and for each mutant for all test cases in test 

suite. But this testing should be stopped if specified reliability of test suit has been achieved 
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or if pursuing further in testing is resulting in much testing cost as compared to benefit from 

it (Khan, T., 2015). 

 

4.4 Experiment 3: implementation 

 

The libraries of machine learning algorithms are installed in MATLAB framework 

and python. The datasets are inserted into MATLAB and python, and five machine 

learning algorithms are applied on them to get the results. Each machine learning 

algorithm is repeated 100 times and 10 fold cross validation is used for training and testing 

datasets. Machine learning algorithms are applied on the dataset before preprocessing and 

after preprocessing. 

The following tables show the result of applying the algorithms on the large scale 

dataset (processed and unprocessed): 

 

Table 6: Naive Bays Algorithm on Large Scale Processed Dataset 
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Ant  90.035 9.965 0.992 0.906 0.947 9.900 4.800 0.327 

naive bays Cassandra 92.752 7.248 0.991 0.935 0.962 26.620 5.580 0.173 

Wicket 92.849 7.151 0.991 0.936 0.963 15.130 4.170 0.216 

 

Table 7: Naive Bays Algorithm on Large Scale Unprocessed Dataset 
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Ant  88.607 11.393 0.994 0.891 0.939 8.150 6.550 0.446 

naive bays Cassandra 88.788 11.212 0.992 0.894 0.940 20.760 11.440 0.355 

Wicket 91.227 8.773 0.992 0.919 0.954 13.650 5.650 0.293 
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Table 8: J48 Algorithm on Large Scale Processed Dataset 
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Ant  98.958 1.042 0.990 1.000 0.995 14.700 0.000 0.000 

J48 Cassandra 95.853 4.147 0.990 0.968 0.979 0.913 0.087 0.087 

Wicket 98.953 1.047 0.990 1.000 0.995 19.300 0.000 0.000 

 

Table 9: J48 Algorithm on Large Scale Unprocessed Dataset 
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Ant  98.944 1.056 0.990 1.000 0.995 14.690 0.010 0.001 

J48 Cassandra 98.948 1.052 0.990 1.000 0.995 32.120 0.080 0.002 

Wicket 98.951 1.049 0.990 1.000 0.995 19.060 0.240 0.012 

 
Table 10: Decision Table Algorithm on Large Scale Processed Dataset 

p
ro

ce
ss

ed
 

d
at

a 

A
cc

u
ra

cy
 

E
rr

o
r 

R
at

e 

P
re

ci
si

o
n
 

R
ec

al
l 

F
-m

ea
su

re
 

F
al

se
 

p
o
si

ti
v
e 

T
ru

e 

N
eg

at
iv

e 

S
p
ec

if
ic

it
y
 

A
lg

o
ri

th
m

 
Ant 98.960 1.040 0.990 1.000 0.995 14.700 0.000 0.000 

Decision Table Cassandra 97.899 2.101 0.979 1.000 0.989 32.000 0.000 0.000 

Wicket 98.953 1.047 0.990 1.000 0.995 19.300 0.000 0.000 
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Table 11: Decision Table Algorithm on Large Scale Unprocessed Dataset 
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Ant 98.960 1.040 0.990 1.000 0.995 14.700 0.000 0.000 

Decision Table Cassandra 97.910 2.090 0.979 1.000 0.989 31.450 0.550 0.017 

Wicket 98.886 1.114 0.989 1.000 0.994 11.500 0.000 0.000 

 

Table 12: Random Forest Algorithm on Large Scale Processed Dataset 
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Ant 99.013 0.987 0.991 1.000 0.995 13.300 1.400 0.095 

Random Forest Cassandra 97.943 2.057 0.980 0.999 0.990 29.860 2.140 0.067 

Wicket 98.924 1.076 0.990 0.999 0.995 10.520 0.980 0.085 

 

Table 13: Random Forest Algorithm on Large Scale Unprocessed Dataset 
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Ant 98.990 1.010 0.990 1.000 0.995 13.650 1.050 0.071 

Random Forest Cassandra 98.040 1.960 0.981 0.999 0.990 28.740 3.260 0.102 

Wicket 98.942 1.058 0.990 1.000 0.995 10.550 0.950 0.083 

 

Table 14: SVM Algorithm on Large Scale Processed Dataset 
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Ant 98.957 1.043 0.990 1.000 0.995 14.700 0.000 0.000 

SVM Cassandra 97.911 2.089 0.979 1.000 0.989 32.000 0.000 0.000 

Wicket 98.884 1.116 0.989 1.000 0.994 11.500 0.000 0.000 
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Table 15: SVM Algorithm on Large Scale Unprocessed Dataset 
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Ant  98.960 1.040 0.990 1.000 0.995 14.700 0.000 0.000 

SVM Cassandra 97.911 2.089 0.979 1.000 0.989 32.000 0.000 0.000 

Wicket 98.886 1.114 0.989 1.000 0.994 11.500 0.000 0.000 

 

The following tables show the result of applying the algorithms on the small scale 

dataset (processed and unprocessed): 

 

Table 16: Naive Bays Algorithm on small Scale Processed Dataset 
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Apa 86.528 13.472 0.997 0.867 0.925 0.100 0.030 0.231 

Naïve Bays 

apache-log4 92.758 7.242 0.990 0.936 0.962 4.230 0.470 0.100 

cinema 42.536 57.464 0.983 0.428 0.585 0.300 0.100 0.250 

commons-codec 93.015 6.985 0.987 0.940 0.960 1.410 0.290 0.171 

common-lang 23.194 76.806 0.991 0.226 0.368 1.120 4.580 0.804 

iyad-marc4j 29.061 70.939 0.995 0.286 0.429 0.100 0.400 0.800 

jpacman 90.024 9.976 0.991 0.909 0.946 0.200 0.000 0.000 

jtopas1 63.401 36.599 0.997 0.633 0.765 0.110 0.390 0.780 

jtopas2 81.028 18.972 0.992 0.815 0.894 0.320 0.180 0.360 

puremvc 91.171 8.829 0.995 0.916 0.952 0.100 0.200 0.667 

realstate 66.652 33.348 0.991 0.667 0.789 0.210 0.290 0.580 
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Table 17: Naive Bays Algorithm on small Scale Unprocessed Dataset 
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Apa 88.318 11.682 0.994 0.888 0.936 0.180 0.220 0.550 

Naïve Bays 

apache-log4 87.437 12.563 0.990 0.882 0.924 3.920 0.780 0.166 

cinema 59.077 40.923 0.988 0.595 0.735 0.270 0.130 0.325 

commons-codec 91.439 8.561 0.988 0.924 0.952 1.350 0.350 0.206 

common-lang 25.658 74.342 0.994 0.250 0.400 0.850 4.850 0.851 

iyad-marc4j 35.576 64.424 0.990 0.354 0.513 0.200 0.300 0.600 

jpacman 93.439 6.561 0.991 0.943 0.965 0.200 0.000 0.000 

jtopas1 86.429 13.571 0.998 0.865 0.926 0.100 0.400 0.800 

jtopas2 87.220 12.780 0.994 0.876 0.931 0.270 0.230 0.460 

puremvc 88.554 11.446 0.995 0.889 0.937 0.100 0.200 0.667 

realstate 85.303 14.697 0.995 0.856 0.919 0.200 0.300 0.600 

 

Table 18: J48 Algorithm on small Scale Processed Dataset 
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Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000 

J48 

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000 

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000 

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000 

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000 

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000 

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000 

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000 

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000 

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000 

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000 
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Table 19: J48 Algorithm on small Scale Unprocessed Dataset 
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Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000 

J48 

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000 

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000 

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000 

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000 

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000 

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000 

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000 

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000 

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000 

realstate 98.825 1.175 0.990 0.999 0.994 0.500 0.000 0.000 

 

Table 20: Decision Table Algorithm on small Scale Processed Dataset 
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Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000 

Decision Table 

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000 

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000 

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000 

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000 

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000 

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000 

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000 

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000 

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000 

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000 
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Table 21: Decision Table Algorithm on small Scale Unprocessed Dataset 
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Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000 

Decision Table 

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000 

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000 

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000 

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000 

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000 

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000 

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000 

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000 

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000 

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000 

 

Table 22: Random Forest Algorithm on small Scale Processed Dataset 
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Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000 

Random Forest 

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000 

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000 

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000 

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000 

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000 

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000 

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000 

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000 

puremvc 98.545 1.455 0.986 1.000 0.993 0.300 0.000 0.000 

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000 
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Table 23: Random Forest Algorithm on small Scale Unprocessed Dataset 
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Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000 

Random Forest 

apache-log4 98.804 1.196 0.990 0.998 0.994 4.460 0.240 0.051 

Cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000 

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000 

common-lang 98.786 1.214 0.990 0.998 0.994 5.690 0.010 0.002 

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000 

Jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000 

jtopas1 98.709 1.291 0.988 0.999 0.993 0.500 0.000 0.000 

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000 

Puremvc 98.545 1.455 0.986 1.000 0.993 0.300 0.000 0.000 

Realstate 98.950 1.050 0.990 1.000 0.995 0.500 0.000 0.000 

 

Table 24: SVM Algorithm on small Scale Processed Dataset 

p
ro

ce
ss

ed
 

d
at

a 

A
cc

u
ra

cy
 

E
rr

o
r 

R
at

e 

P
re

ci
si

o
n
 

R
ec

al
l 

F
-m

ea
su

re
 

F
al

se
 

p
o
si

ti
v
e 

T
ru

e 

N
eg

at
iv

e 

S
p
ec

if
ic

it
y
 

A
lg

o
ri

th
m

 

Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000 

SVM 

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000 

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000 

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000 

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000 

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000 

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000 

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000 

jtopas2 99.000 1.000 0.990 1.000 0.995 0.500 0.000 0.000 

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000 

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000 
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Table 25: SVM Algorithm on small Scale Unprocessed Dataset 
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Apa 98.710 1.290 0.987 1.000 0.993 0.400 0.000 0.000 

SVM 

apache-log4 98.939 1.061 0.989 1.000 0.995 4.700 0.000 0.000 

cinema 98.788 1.212 0.988 1.000 0.994 0.400 0.000 0.000 

commons-codec 98.712 1.288 0.987 1.000 0.994 1.700 0.000 0.000 

common-lang 98.966 1.034 0.990 1.000 0.995 5.700 0.000 0.000 

iyad-marc4j 99.012 0.988 0.990 1.000 0.995 0.500 0.000 0.000 

jpacman 99.091 0.909 0.991 1.000 0.995 0.200 0.000 0.000 

jtopas1 98.848 1.152 0.988 1.000 0.994 0.500 0.000 0.000 

jtopas2 99.000 1.000 0.989 0.964 0.970 0.500 0.000 0.000 

puremvc 98.593 1.407 0.986 1.000 0.993 0.300 0.000 0.000 

realstate 98.971 1.029 0.990 1.000 0.995 0.500 0.000 0.000 
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Chapter Five 
 

5. Results Discussion 
 

A few researches discuss the software fault proneness prediction at method level. 

One of these few researches discussed the method level fault prediction, but it used 

historical metrics which related to control version (Hata, et al, 2012). The dataset for this 

paper is gained through contacting the authors but without details about how it was built 

depending on class label. This ambiguous dataset motivate us to find the projects of it and 

create new dataset of these projects with different metrics type and discover how the class 

label is built.  

They used the historical metrics on method level and applied one machine learning 

algorithm, this motivate us to use object oriented metrics on method level and apply more 

machine learning algorithms.  

The result in our developed approach we gained from applying python on the 

dataset is compared with (Hata, et al, 2012) depending on error rate. It is obvious that the 

result in our developed approach using Random Forest is better than their result as shown 

in Table 28. In this thesis another 4 classifiers used to predict faults on the method level. 
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Table 26: Comparison of Error Rate 

Dataset Error Rate Error Rate (Hata, et al, 2012) Algorithm 

Ant  1.010 1.600 

Random Forest Cassandra 1.960 6.300 

Wicket 1.058 0.800 

 

Based on comparison between processed and unprocessed datasets for the large 

scale as shown in the tables before, it is obvious that the processed data is a little bit better 

than the unprocessed data for the large scale datasets. 

While based on comparison between processed and unprocessed data for the small 

scale datasets, it is obvious that there is no effect of preprocessing the dataset to get better 

results for all algorithms. 

Based on the tables before of the evaluation measures the results show that for the 

accuracy and error rate the best algorithm is Random Forest and the descending order for 

the algorithms is: Random Forest, Decision Table, J48, SVM and the last one is Naïve 

Bays. While for the precision the descending order is Naïve Bays, Random Forest, J48, 

SVM and Decision Table. For the recall the order is Decision Table, SVM, J48, Naïve Bays 

and Random Forest. The false-positive order is Decision Table, SVM, J48, Random Forest 

and Naïve Bays. F-measure order is Random Forest, SVM, Decision Table, J48 and Naïve 

Bays. Finally, the Specificity and True-negative order is Naïve Bays, Random Forest, J48, 

Decision Table and SVM. 
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Chapter Six 

 

6. Conclusion and Future Work 
 

Software fault proneness prediction on the method level was done using building a 

predictive model that use five machine learning algorithms which are Random Forest, J48, 

Naïve Bays, Decision Table and SVM and selected object oriented metrics mentioned 

before.  

The result in our developed approach is compared with (Hata, et al, 2012) 

depending on error rate. It is obvious that the result in our developed approach using 

Random Forest is better than their results.  

Based on comparison between processed and unprocessed datasets for the large 

scale as, it is obvious that the processed data is a little bit better than the unprocessed data 

for the large scale datasets. While based on comparison between processed and 

unprocessed data for the small scale datasets as, it is obvious that there is no effect of 

preprocessing the dataset to get better results for all algorithms. 

The evaluation measures the results show that for the accuracy and Error rate the 

best algorithm is Random Forest and the descending order for the algorithms is: Random 

Forest, Decision Table, J48, SVM and the last one is Naïve Bays. While for the precision 

the descending order is Naïve Bays, Random Forest, J48, SVM and Decision Table. For the 

recall the order is Decision Table, SVM, J48, Naïve Bays and Random Forest. The false-

positive order is Decision Table, SVM, J48, Random Forest and Naïve Bays. F-measure 
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order is Random Forest, SVM, Decision Table, J48 and Naïve Bays. Finally, the Specificity 

and True-negative order is Naïve Bays, Random Forest, J48, Decision Table and SVM. 

In this thesis three out of rate projects are used for the software fault proneness 

prediction. As a future work, five other projects will be used.  
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